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ON THE CONVERGENCE FOR WEIGHTED SUMS OF
ASYMPTOTICALLY ALMOST NEGATIVELY
ASSOCIATED RANDOM VARIABLES

TagE-Sunc KiM AND HYuN-CrULL KiM

Abstract. ABSTRACT. In this paper we derive complete conver-
gences for weighted sums of asymptotically almost negatively asso-

ciated random variables.

1. Introduction

The concept of complete convergence introduced by Hsu and Rob-
bins(1947) is as follows. A sequence {U,,n > 1} of random variables
converges completely to a constant C if > o2, P{|{Un — C| > €} <
oo for all € > 0. Since then, there have been many authors who de-
vote the study to complete convergence for sums and weighted sums of
i.id. random variables (see, e.g. Chow(1966), Thrum(1987), Gut(1993)
and Li. et al.(1995)). Recently, these complete convergences were gen-
eralized to negatively associated(NA) sequences by Liang and Su(1999).
Recall that a finite family {X;, -, X,} is said to be negatively asso-
ciated(NA) if for any disjoint subsets A,B C {1,---,n} and any real
coordinatewise nondecreasing functions f : R* — R and g : RE - R,
Cov(f(Xi,i € A),9(X;,j € B)) 0.

An infinite family of random variables is negatively associated(NA) if
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every finite subfamily is negatively associated(NA). This concept was
introduced by Joag-Dev and Proschan(1983). By inspecting the proof
of Matula’s(1992) maximal inequality for NA sequences, Chandra and
Ghosal(1996) found that one can also allow positive correlations pro-
vided they are small. Primarily motivated by this they introduced the
following dependence condition: A sequence {X,,n > 1} of random
variables is called asymptotically almost negatively associated( AANA) if

there is a nonnegative sequence g(m) — 0 such that

Cov(f(Xm), 9(Xmt1, s Xmtk))
< q(m)(var(f(Xm))var(g(Xmi1, -+ 3 Xengi)))/? (1)

for all m,k > 1 and for all coordinatewise increasing continuous func-
tions f and g whenever the right side of (1) is finite. The family of
AANA sequences contains NA(in particular, independent) sequences
(with g¢(m) = 0, ¥ m > 1) and some more sequences of random variables
which are not much deviated from being negatively associated.

In this paper we study complete convergence for weighted sums of AANA

sequence, which is supposed to have not heen studied in the literature.
2. Preliminaries

We start this section with the properties of AANA random variables
which can be obtained easily from the definition of AANA random vari-

ables.

Lemma 2.1 Let {X,,n > 1} be asequence of AANA. Then {fn(X,),n >
1} is a sequence of AANA random variables and let f,(-),n=1,2,---,

be nondecreasing functions.

Lemma 2.2(Chandra and Ghosal(1996) Let X{,---, X, be mean

zero, square integrable random variables such that condition (1) holds for
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1 < m < k+m < n and for all coordinatewise nondecreasing continuous
functions f and g whenever the right-hand side of condition (1) is finite.
Let A2 = an;ll ¢*(m) and 0 = EX}, 1 < k < n. Then we have
k n
E(max Y Xi)? < (A+(1+AHYH2Y o}, (2)

1<k<
=h=n i=1 k=1

Proof. See the proof of Theorem 1 in Chandra and Ghosal(1996).

Lemma 2.3 Let X1,---,X,, be AANA random variables satisfying con-
ditions in Lemma 2.2. Then

ZXIC A+1+A21/2 ZQ (3)

k=1
Proof . The proof is based on the ideas of the proof of Theorem 1 in
Chandra and Ghosal(1996). To prove (3) set

Yi=Xe/Q o) 1<k <n. (4)
j=1
Note that Y7,Ys,--- , are AANA by Lemma 2.1 and that > p_, 77 = 1,
where 'r,? = EY,E‘ And set

T, =Y+ Y1+ +Y,, 1<k<n (5)
Then we have
T, =Y + Tt
and consequently it follows from (1) that
ETE <72+ ET2,, + 2q(k)n(ETE )V, 1<k <n-1.
Define a sequence {£x,1 < k < n} by

=1 +&,+20k)brqr, 1<k <n—1,
52 — T2.

From the definition of £ we have

ET} <&, 1<k<n (6)
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Note that {{} is decreasing. Thus
€k S TE+ &y + 29(k)kér, 1<k <n— 1.

Substituting sequentially and using the Cauchy-Schwarz inequality, we
get

n—1

& <1426 qlk)m
k=1
n—1 n—1
< 14+26(3 PRV )2
k=1 k=1
< 1%‘2£LA.
Hence
(61— AP <1+ A% (7)
Combining (6) and (7) we have
ET <€ < (A+(1+ 49127 (8)

Thus by (4) and (8) the desired result (3) follows.
3. Main results

Theorem 3.1 Let { X}, k > 1} be a sequence of AANA random variables
with EXy = 0 and EX? < B < 0o for all k > 1. Let A2 = 3771 ¢%(m)

m=1}
and let {ank,1 < k < n,n > 1} be an array of real numbers satisfying
the condition
Y a2 =0’ asn — oo, lank| =O(1), L<k<n, n>1  (9)
k=1

for some 0 < § < 1. Assume

> ¢*(m) < oo (10)
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Then, ¥ ¢ > 0 and some & such that 6§ < & <1,

Zn‘a’Pﬂ Zam-Xi |> en'/?) < oo. (11)
n=1 i=1

Proof. To prove (11) it suffices to show that

S PO S 6 Xi > en'/?) < oo, Ve 0, (12)
n=1 i=1
o0 ; n
Zn_a P(| Za;l-Xi 1> en!/?) < o0, Ve >0, (13)

n=1 i=1
where af, = a,: V0, a; = (—an;) V0. We will prove {12) only, since the
proof of (13) is analogous. From the definition of an AANA sequence(see
Lemma 2.1), we know that {a:iXi,l <i<n,n> 1} is still an AANA

sequence, and hence by applying (3) of Lemma 2.3 we have

S0 P Y ah X > /)
n=1 =1

<e?y n~ 10 (A 4 (14 AR D a2 EXE.
n=1 k=1

Note that conditions (9) and EX? < B < oo imply
ZaikEX,g = 0(n?) as n — oo for some 0 < J < 1. (14)
k=1

Hence, by (10) and (14) we have, for some 0 < ¢ < 6§ <1

o0 n

ST (A4 (1 A2 62 EXE

n=1 k=1

<< (A+ (1 +A2)1/2)2Zn_(1+6‘_6) < 00,
n=1

where o << b means a = O(b). The proof is complete.
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Remark. Let {Xy,k > 1} be a sequence AANA random variables with
EX, =0. Let A2 =5"""1 ¢%(m). Assume that (10) holds and that

X:EX,-2 = O(n%) for some 0 <8 < 1.

i=]1

Then, V € > 0 and 8 such that § < &' <1

Zn_é P( ZXi |> en!/?) < oo
n=1 i=1

By the similar method of the proof of Theorem 3.1 from (2) of Lemma
2.2 Theorem 3.2 follows :

Theorem 3.2. Let {X;,k > 1} be a sequence of AANA random
variables with £X;, = 0 and EXE < B < oo forall k > 1. Let
A? = 771 ¢?(m) and let {an, 1 < k < n,n > 1} be an array of
real numbers satisfying the condition (9). If (10) holds then ¥V € > 0 and
6 such that § < & <1

5% k
Zn—é P(| max aniXi |> en'’?) < 0. (15)
oyt 1<k<n £

Theorem 3.3 Let {X, Xi, k > 1} be sequence of identically distributed
AANA random variables with EX = 0 and EX? < oco. Let A% =
an_:11 q?(m) and let {a.x,1 < k < n,n > 1} be an array of real numbers
satisfying (9). If (15) holds then for some §" such that § < § <1 we

have

S0 3P| ani X [> n'?) < oo. (16)
n.—_l

=1
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Proof. Obviously (15) implies

Zn 5 P( max | an; X; |> nl/?) < oo, (17)

n=1

P{max | a,; X; |> n'/?) 0 as n — . (18)
i<j<n

Note that
n

1/2y _ 1/2 1/2
P(max | angX; > ’".le” an X; [> 0!/, max | anXi [< '),
J:

Hence, we deduce that

Z:=1P(i ani X; |> n'/?) = P(maxicjzn | angX; |> n1/?)

+D_ P(lan Xy [> %, max | anX; > n'?). (19)
=1

Also, we have

> P(lan X5 |> 0t Jnax | ani X |> n'?)
ot <i<

Ji
= Zn_ E{I{| an; X; |> R I( g max | ani X; |> n'/?)}

1<j—

=Z ABU(l ans X; |> n1/2)1( max | anX; > n'/2)]

<isj—

~EI(| anjX; [> nVEI( max |anXi |>n'/%)}
<51
Z {EI an; Xj |> ) EI( | Jnax | ani X: |> nt?)}
i<y~

< BY M ansX; 5 172) = P(| aniX; 1> 0/ (max | aniXi [> n'/?)
i=1 ==

+ZJ Pllan;X; 1> nY?)P(maxy<i<n | aniXi [> nt/?) = II + I11.(20)
Define

Y. = aanj7 Zf Gpj >0,
" —an; Xj, if anj <0.
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Then from the definition of AANA the random variables {¥,;,1 <
j < myn > 1} are AANA and {I(Y,; > n'/2)} are still AANA(see
Lemma 2.1). By applying the Cauchy-Schwarz inequality and Lemma
2.2, we get

[ II] = |EY [I(| an; X; |> n*?) = P({ ap; X; [> n'/?)]

J=i

XI(lfél.a(X | ani Xi > n*?) |

< [E(Z I() an; X; |> n1/2) — EI() an; X; |> nl/Z))Q
i=1
xE(I(max | an:X; |> n'/2))%]}/2

1<i<n

- X 1/2 X 1/2y11/2
= [Var(d_I(l an; X; |> n NP(max | aniX; |>nl/?)]

< [2{Va'l‘[zn: I(Ynj > n1/2)] + Var[i I(Ynj < _n1/2)]}
Jj=1 j=1

x P( max | aniXi |> n1/2)]1/2
1<i<n

< [S{i P(Y,; > n'/?) + Xn: P(Y,; < —nl/?)}

J=1 =1
x P(max | aniX; [> n'/2)(A + (1+ A%/

1<i<n

P(| an; X |> n'/2) + 4{(A + (1 + A2)V/2)2

J
x P(max | a;X; |> n'/%)} (21)

1<i<n
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by Vab < %’—b From (19)-(21) we have

D] =

ZP(! an; X |> n'/?)
j=1

< {L+4(A+ 1+ A7) ?P}P(max | aniX; |> n'7?)

. 1/2 v 1/2
+Z}P(; an; X > n )P(lxg%); | ani X; |> n1/?) (22)
j:
and from (18) we get
N P(ans X > n'/?) << P(max | anX; |> nl/?) (23)

i=1
for sufficiently large n, where a << b means a = O(b). Therefore, from
(17) and (23)

i n 3 P( ansX |> n'/?) < 0.

n=1 =1

The proof is complete.

Corollary 3.4 Let {X;,k > 1} be a sequence of AANA random vari-
ables with EX, = 0 and EX,% < oo forall k> 1 and let {a,1 <k <
n,n > 1} be an array of real numbers. Assume that (15) holds and that
for 8 > 0 small enough,

P(ma}(lgign I am-Xi |> enlﬂ) <oVe>0

for sufficiently large n. Then, Ve >0

3" P( anj X; |> en'/?) << P(maxigign | amiXi [> en'/?)
i=1

for sufficiently large n.

Theorem 3.5 Let {X, X,k > 1} be a sequence of identically dis-
tributed AANA random variables with EX = 0. Let A% = Y0 ¢(m)
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and let {anx,1 < k <n,n > 1} be an array of real numbers satisfying
Zaik=0(1),1§k5n, as n — oo. (24)

If (11) and
Nin,m+1) = #{k>1:] au |> (m+ 1)"2} =< O(m) as n — oo(25)
hold then the following statements are equivalent:

(i) EX? < oo,

(i) » %P(| D anXi > en'’?) <o ¥ e> 0.
n=1 i—=1

Proof. (i) = (ii) As in the proof of Theorem 3.1 by Lemma 2.3 we have

3

i 1p( i at X, |> enl’?)

v 1
S S B (4 R RPECS
1
o0
A+ (1+ AN "0 < oo,

n=1

Similarly, we also have

ﬁl"“*

T
Za;iX,- > en!/?) < oo.
i=1
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Thus () implies (41).
It follows from (24) and (25) that

n
Y P(l an; X [>n'/?)

i=1
E _ E P(lan; X |2 nl/Q)
= =

(j+1)~1<ad,<57?

|

o0

:Z(N(”J+1)— (”,j))ZP(m§X2<m+1)
=1 o
= i(m/n)P(m < X?<m+1). (26)

n

m

(26) yields

o0 1 mn
Y => P(anyX|>nt?) =
n=1 n i=1

1 o0
—Z (m/n)P(m < X? <m+1)
n

m=n

™8

I
-

n

Mo 10

m
mP(m < X? <m+1) Z 1/n%)
1 n=1

-

it]

mPm < X*<m+1),  (27)

X
NE

ll
-

m

where a = b means a = O(b) and b = O(a). Finally, by (ii) and (27) we

obtain

::ZmP(mSX2<m+1)<oo

n=1

Thus, the proof is complete.
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