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CALCULATION OF THE HARMONIC SERIES VIA
WARING’S FORMULA

JAE-YounG CHUNG

P
Abstract. We calculate the harmonic series Epp i= 0 —3 via

Waring's formula.

1. Introduction

It is well known as Euler’s formula that for all natural numbers p,

o L _ (1t iB,,
(1.1) Eap ._;;ﬂ—p = ) P

Here Bs, are the Bernoulli numbers given by B; = f (7)(0), where
x

flw) ==

There are many ways to calculate the above series; for example, the

Cauchy residue theorem, the Weierstrass product theorem, Fourier series
or Taylor series expansions, and so on.

In this note, based on Newton’s formula we first give a recurrence
formula for the sequence Eo,: Let Egp, = ap7r2p . Then a, is computed
by

I (=Dl g

(1.2) ap:;W’ ag = p.
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The formula (1.2) turns out to be more efficient than Euler’s formula
since the recurrence formula of the Bernoulli numbers By, involves 2p-
terms but the recurrence formula (1.2) involves p-terms.

Secondly, based on Waring’s formula we show that a, is given by
(1.3)

(=L)kztkadt (kg oo by — Dp, _
ap=2 Tl Ry ’ N

where the summation is taken over all p-tuples (k1,. .., k;) of nonnega-
tive integers with ky + 2ks + --- + pk, = p.

It will be seen that the formula (1.3) is also more efficient than those

which can be derived from Euler’s formula.
2. Proof of the formulas

We prove the formulas (1.2) and (1.3). We denote by o) the k-th

elementary symmetric pelynomial

ak(:rla“'al‘n): Z :Cil"'xik

1<) << <n

in the indeterminates z1,...,z, over R.

The following well known formulas are useful later which can be found
in [2, Theorem 1.75, Theorem 1.76].

Proposition 1 (Newton’s formula). Let o1,...,0, be the elemen-
tary symmetric polynomials and let s, = #f +-- -+ 2%, and so = p. Then
the equality

(2.1) 8p— 8p_101+ 8p_202 — -+ (—1)Pspo, =0

holds for all p=1,2,...,n.
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Proposition 2 (Waring’s formula). With the same notations as in

Proposition 1, we have

@—Uh+%+“w1+- +k, — )p o
1

kn
(22)  s=) . o
where the summation is taken over all n-tuples (k;,--- , k) of nonneg-
ative integers with k1 + 2kg +--- +nk, = p
From De Moivre’s formula

(cos@ + isinF)™ = cosmb + isinmb,
it follows that
(2.3)

sinmf = sin™ @ () cot™ 18 — (3 ) cot™ 28+ (F)cot™ P — ).
Puttingm =2n+1 and 6 = 2n+1, k=1,2,...,n,in (2.3), it is easy to
see that
km
T = cot? (2n+1) yk=1,2,...,n

are the solutions of the equation

(24) Pn(.’lt) — (in-i-l):rn _ (2n;1)mn——l + (2715-{—1)2771—2 - =0

Now we employ the inequality

1
(2.5) c0t2x<p<1+cot2x, 0<:1:<%.
Putting = = +1 in (2.5), taking p-power and summing up the results
we have

2p n 2p
s 1 T
(_2n+1) sp<zk—<(2n+l> (n+("‘1’)81+...+(£)3p),

where s, = 2§ + - -+ + 7. It follows from (2.1) that

TL""OO (

) y=0, 1<k<p—1,
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and we can write

(2.6) ap = lim

3
%,
oo (2n + 1)20° P =

Now by the equation (2.1), (2.6) and the relation between the solutions
of the equation P,(z) = 0 and the coefficients of P,(z) we have

k' 1
Sp—k Ok

n—rooz (2n + 1 2(p—k) ' (271, -+ I)Q—k

ap =

1k1

(-
- Z 2k+1 RITr w©=P

Thus we obtain the recurrence formula (1.2). Now we prove the formula

(1.3}. In view of (2.6) and Waring’s formula we can write

_ 3 (_1)k2+k4+---(k1 +. —i—k _ l)p a{ﬁl_ .U;J“P
= 2. k- k) (2n + 1)%

k1+2ka+--+phkp=p
On the other hand, for each j =1,2,...,p, we have
o; 1

m Cn+ 1% ~ (25 + 0y

Thus it follows that

k1 k ki k
hm 0'1 ...O—pP _ 1 0.1 .__a.pP
n—eo (2n + 1)2P n—o0 (2n + 1)2(k1+2kz++pkp)

S Y N S

which gives the formula (1.3).

Remark. It is not likely to obtain the formulas (1.2) and (1.3) easily
from Euler’s formula (1.1}. Instead, if we use Faa di Bruno’s formula

for differentiation of composite functions we obtain a similar formula as
(1.3) directly from Euler’s formula. Indeed, since B, = (g o h)™/(0),
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where g(z) =L and h(z) =1+ § + f,—f + -+, we can write
k k kn
B, = 3 maR0) (KOO (K@Y (a0
no= Tl k! 1 2! nl

_ Zn!(kl+---+kn)!(—1)’“+'“+’“" 1\ (1" [/1\*
- kil- - k! 21/ \3 nl

where the summation is taken over all n-tuples (k1,-- -, k,) of nonneg-

ative integers with k1 + 2ke + - -- + nk, =n

Thus we have

_1 kl+"'+k2 +p+1 k e k: !221:,_1
e

I—k1g)—k2 L (2p 1)1 e
kil k) 2 (2p+1)

where the summation is taken over all 2p-tuples (ki, ..., ka,) of nonneg-
ative integers with ki + 2ko + - - - + 2pkgp, = 2p.

From one of the formulas (1.2) or (1.3) we obtain the followings:

Z z = Y == LA 1 _
nd ’ né 945’ n8 ~ 9450’
n=1 n=1 n=1 n=
i 1 i 1 691x!2 i": 1 2t
— T 93555 —~ 12 7 638512875 —~ nld 7 18243225
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