REPRESENTATION OF INTEGRAL OPERATORS ON $W_2^2(\Omega)$ OF REPRODUCING KERNELS

Dong-Myung Lee, Jeong-Gon Lee and Ming-Gen Cui

Abstract. We prove that if \mathbb{K}^* is adjoint operator on $W_2^2(\Omega)$, then $\mathbb{K}^*v(t,\tau) = \langle v(\cdot,\cdot), m(\cdot,\cdot;t,\tau) \rangle$, $v(x,y) \in W_2^2(\Omega)$; it is also related to the decomposition of solution of Fredholm equations.

1. Intorduction

In this paper we are concerned with representing the adjoint operator \mathbb{K}^* on $W_2^2(\Omega) = \{u(x,y)|u(x,y) \text{ is absolutely continuous and } \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial^2 u}{\partial x \partial y} \in L^2(\Omega)\}$ of reproducing kernels :

$$\mathbb{K}^* v(t,\tau) = \langle v(\cdot,\cdot), m(\cdot,\cdot;t,\tau) \rangle, v(x,y) \in W_2^2(\Omega),$$

where $\Omega = [a, b] \times [c, d]$. In the case of $W_2^1(\mathbb{R})$, $m(\cdot, \cdot)$ is known (see [3] and the referenses given for that theorem).

We use Cui's approach [3] to seek a good component $m(\cdot, \cdot; t, \tau)$, regarded as an ingtegral of reproducing kernels on Ω and extend Cui's result of $W_2^1(\mathbb{R})$ to the case of $W_2^2(\Omega)$.

Throughout, $L^2(\Omega)$ denotes, as usual, the Hilbert space of all Lebesgue square integrable functions on Ω . The needed facts about reproducing kernels can be found in [9].

Received July 27,2004; Revised October 14,2004.

²⁰⁰⁰ Mathematics Subject Classification :46E22, 46E40, 47B32.

Key words and phrases : Absolutely continuous, Fredholm equation, Integral operator, Reproducing Kernel.

2. The Result

We now define, for $u, v \in W_2^2(\Omega)$,

$$< u, v> = \int \int_{\Omega} (u(x, y)v(x, y) + \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} + \frac{\partial^2 u}{\partial x \partial y} \frac{\partial^2 v}{\partial x \partial y}) d\sigma$$
 (2)

as inner product on $W_2^2(\Omega)$ and norm $||u||_{W_2^2} = \langle u, u \rangle^{\frac{1}{2}}$.

We recall, see [4], that any $u(x) \in W_2^1([a,b])$ can be represented in terms of a reproducing kernel such as $u(x) = \langle u(\cdot), R_x(\cdot) \rangle$, where

$$R_x^{ab}(y) = \frac{1}{2sinh(b-a)}[cosh(y+x-a-b)+cosh(|y-x|+a-b)], y \in [a,b].$$

Our next result extends this formula to the case of $\Omega = [a, b] \times [c, d]$.

Lemma 1. $R_{xy}(\cdot, \cdot)$ is a reproducing kernel of space $W_2^2(\Omega)$, where $R_{xy}(\cdot, \cdot) = R_x^{cd}(\cdot)R_y^{cd}(\cdot)$.

Proof. For any $u \in W_2^2(\Omega)$,

$$\langle u(\cdot, \cdot), R_{xy}(\cdot, \cdot) \rangle = \int_{c}^{d} d\eta \int_{a}^{b} \{u(\xi, \eta) R_{xy}(\xi, \eta) + u'_{\xi}(\xi, \eta) R'_{xy}(\xi, \eta)_{\xi}$$

$$+ u'_{\eta}(\xi, \eta) R'_{xy}(\xi, \eta)_{\eta} + u''_{\xi\eta}(\xi, \eta) R''_{xy}(\xi, \eta)_{\xi\eta} \} d\xi$$

$$= \int_{c}^{d} d\eta \{ R_{y}(\eta) \int_{a}^{b} (u(\xi, \eta) R_{x}(\xi) + u'_{\xi}(\xi, \eta) R'_{x}(\xi)_{\xi}) d\xi$$

$$+ R'_{y}(\eta)_{\eta} \int_{a}^{b} (u'_{\eta}(\xi, \eta) R_{x}(\xi) + u''_{\xi\eta} R'_{x}(\xi)_{\xi}) d\xi \}.$$

Applying the reproducing properties of $R_y(\xi)$, we have

$$\begin{split} \int_a^b u(\xi,\eta)R_x(\xi) + u_\xi'(\xi,\eta)R_x'(\xi)_\xi d\xi = < u(\cdot,\eta), R_x(\cdot) > = u(x,\eta). \\ \int_a^b u_\eta'(\xi,\eta)R_x(\xi) + \frac{\partial}{\partial \xi}(u_\eta'(\xi,\eta))R_x'(\xi)_\xi d\xi = < u_\eta'(\cdot,\eta), R_x'(\cdot) > = u_\eta'(x,\eta). \\ \text{So that,} \end{split}$$

$$\langle u(\cdot,\cdot), R_{xy}(\cdot,\cdot) \rangle = \int_{c}^{d} \{u(x,\eta)R_{y}(\eta) + u'_{\eta}(x,\eta)R'_{x}(\eta)\}d\eta.$$

Finally, using the definition of reproducing kernels to get the conclusion.

From the preceding results and the classical Fredholm equation, we have the following application. \Box

Lemma 2. Let $(x,y;t,\tau)\in\Omega\times\Omega$ and let $k(x,y;t,\tau)\in L^2(\Omega)$ for each fixed $(x,y)\in\Omega$. If, for each fixed $(t,\tau),k(x,y;t,\tau)$ is absolutely continuous on Ω and $k,\frac{\partial k}{\partial x},\frac{\partial k}{\partial y},\frac{\partial^2 k}{\partial x\partial y}\in L^2(\Omega)$, then the integral operator \mathbb{K} on $W_2^2(\Omega)$ defined by

$$\mathbb{K}u(x,y) := \int_a^b \int_c^d k(x,y;t,\tau)u(t,\tau)d\tau dt,$$

for $u(x,y) \in W_2^2(\Omega)$ is well-defined and bounded.

Proof. First note that, since k is absolutely continuous, we have

$$\begin{array}{lcl} k(x,y;t,\tau) & = & \int_a^x \int_c^y \frac{\partial^2}{\partial \xi \partial \eta} k(\xi,\eta;t,\tau) d\eta d\xi + \int_a^x \frac{\partial}{\partial \xi} k(\xi,c;t,\tau) d\xi \\ & & + \int_a^y \frac{\partial}{\partial \eta} k(a,\eta;t,\tau) d\eta + k(a,c;t,\tau). \end{array}$$

Then, the definition of Fredholm equations and an elementary advanced calculus argument allow us to compute

$$\begin{split} ||\mathbb{K}u(b_{i},c) - \mathbb{K}u(a_{i},c)|| \\ &= |\int_{a}^{b} \int_{c}^{d} \int_{a_{i}}^{b_{i}} \frac{\partial}{\partial \xi} k(\xi,c;t,\tau) u(t,\tau) d\xi d\tau dt| \\ &\leq \frac{1}{d-c} \int_{a}^{b} \int_{c}^{d} \int_{c}^{d} \int_{a_{i}}^{b_{i}} |\frac{\partial}{\partial \xi} k(\xi,y;t,\tau) u(t,\tau)| d\xi dy d\tau dt \\ &+ \frac{1}{d-c} \int_{a}^{b} \int_{c}^{d} \int_{c}^{d} \int_{a_{i}}^{b_{i}} |\int_{c}^{y} \frac{\partial^{2}}{\partial \xi \partial \eta} k(\xi,\eta;t,\tau) d\eta u(t,\tau)| d\xi dy d\tau dt \\ &\leq \frac{1}{d-c} \int_{a}^{b} \int_{c}^{d} \int_{c}^{d} \int_{a_{i}}^{b_{i}} |\frac{\partial}{\partial \xi} k(\xi,y;t,\tau) u(t,\tau)| d\xi dy d\tau dt \\ &+ \int_{a}^{b} \int_{c}^{d} \int_{c}^{d} \int_{a_{i}}^{b_{i}} |\frac{\partial^{2}}{\partial \xi \partial \eta} k(\xi,\eta;t,\tau) u(t,\tau)| d\eta d\xi d\tau dt. \end{split}$$

So that, by the absolute continuity; for $\epsilon > 0, \sum_{i=1}^{n} (b_i - a_i) < \frac{\delta}{c-d}$ implies that

$$\begin{split} &\sum_{i=1}^{n} ||\mathbb{K}u(b_{i},c) - \mathbb{K}u(a_{i},c)|| \\ &\leq \frac{1}{d-c} \int_{a}^{b} \int_{c}^{d} \int_{c}^{d} \int_{\cup_{i}(a_{i},b_{i})} |\frac{\partial}{\partial \xi} k(\xi,y;t,\tau)u(t,\tau)| d\xi dy d\tau dt \\ &+ \int_{a}^{b} \int_{c}^{d} \int_{\cup_{i}(a_{i},b_{i})} \int_{c}^{d} |\frac{\partial^{2}}{\partial \xi \partial \eta} k(\xi,\eta;t,\tau)u(t,\tau)| d\eta d\xi d\tau dt < \epsilon. \end{split}$$

which shows that $\mathbb{K}u(x,c)$ is absolutely continuous.

Using the same method, we obtain the absolute continuity of $\mathbb{K}u(a,y)$. Consequently, it follows easily that $\frac{\partial}{\partial x}\mathbb{K}u(x,y), \frac{\partial}{\partial y}\mathbb{K}u(x,y)$, and $\frac{\partial^2}{\partial x\partial y}\mathbb{K}u(x,y)\in L^2(\Omega)$, which implies that $\mathbb{K}u(x,y)\in W_2^2(\Omega)$.

Next, to show the boundedness of \mathbb{K} , let $u(x,y) \in W_2^2(\Omega)$. Then we have

$$< \mathbb{K}u, \mathbb{K}u > = \int_{a}^{b} \int_{c}^{d} \{ (\mathbb{K}u(x,y))^{2} + (\frac{\partial}{\partial x}\mathbb{K}u(x,y))^{2}$$

$$+ (\frac{\partial}{\partial y}\mathbb{K}u(x,y))^{2} + (\frac{\partial^{2}}{\partial x\partial y}\mathbb{K}u(x,y))^{2} \} dxdy$$

$$\le \int_{a}^{b} \int_{c}^{d} \int_{a}^{b} \int_{c}^{d} [(k(x,y;t,\tau))^{2} + (\frac{\partial}{\partial x}k(x,y;t,\tau))^{2}$$

$$+ (\frac{\partial}{\partial y}k(x,y;t,\tau))^{2} + (\frac{\partial}{\partial x\partial y}k(x,y;t,\tau))^{2}] d\tau dt dy dx$$

$$\times \int_{a}^{b} \int_{c}^{d} (u(t,\tau))^{2} d\tau dt$$

$$= M||u||_{L^{2}(\Omega)}^{2},$$

where $M = \int_{\Omega \times \Omega} [k^2 + (\frac{\partial}{\partial x}k)^2 + (\frac{\partial}{\partial y}k)^2 + (\frac{\partial^2}{\partial x \partial y}k)^2] d\sigma$, which completes the proof.

Our next result shows that the reproducing kernels of $W_2^2(\Omega)$ actually characterize the adjoint operator \mathbb{K}^* .

Theorem 3. Let \mathbb{K}^* be adjoint operator of \mathbb{K} on $W_2^2(\Omega)$. Then for $v(x,y) \in W_2^2(\Omega)$,

$$\mathbb{K}^* v(t,\tau) = \langle v(\cdot,\cdot), m(\cdot,\cdot;t,\tau) \rangle,$$

where

$$m(x, y; t, \tau) = \int \int_{\Omega} k(x, y; \xi, \eta) R_{\xi \eta}(t, \tau) d\xi d\eta.$$
 (3)

Proof. First note that, for fixed $(x, y; t, \tau)$, $k(x, y; \xi, \eta) R_{\xi\eta}(t, \tau)$ is integrable with respect to (ξ, η) and has partial derivatives for almost all $t \in [a, b]$ by the properties of differentiating Lebesgue integrals with respect to absolute continuity.

So that, for $u, v \in W_2^2(\Omega)$ we have

$$<\mathbb{K}u, v> = \int_{a}^{b} \int_{c}^{d} \left[\int_{a}^{b} \int_{c}^{d} (kv + \frac{\partial}{\partial x} k \frac{\partial}{\partial x} v + \frac{\partial}{\partial y} k \frac{\partial}{\partial y} v \right] + \frac{\partial^{2}}{\partial x \partial y} k \frac{\partial^{2}}{\partial x \partial y} v) dy dx \right] u(\xi, \eta) d\xi d\eta$$

$$= \int_{a}^{b} \int_{c}^{d} \left[\int_{a}^{b} \int_{c}^{d} (kv + \frac{\partial}{\partial x} k \frac{\partial}{\partial x} v + \frac{\partial}{\partial y} k \frac{\partial}{\partial y} v \right] + \frac{\partial^{2}}{\partial x \partial y} k \frac{\partial^{2}}{\partial x \partial y} v) dy dx \right] < u(\xi, \eta), R_{\xi\eta}(t, \tau) > d\xi d\eta$$

$$= \int_{a}^{b} \int_{c}^{d} \left[\int_{a}^{b} \int_{c}^{d} (kv + \frac{\partial}{\partial x} k \frac{\partial}{\partial x} v + \frac{\partial}{\partial y} k \frac{\partial}{\partial y} v \right] + \frac{\partial^{2}}{\partial x \partial y} k \frac{\partial^{2}}{\partial x \partial y} v) dy dx \right]$$

$$\cdot \left[\int_{a}^{b} \int_{c}^{d} u(t, \tau) R_{\xi\eta}(t, \tau) + \frac{\partial}{\partial t} u(t, \tau) \frac{\partial}{\partial t} R_{\xi\eta}(t, \tau) + \frac{\partial^{2}}{\partial t \partial \tau} u(t, \tau) \frac{\partial^{2}}{\partial t \partial \tau} R_{\xi\eta}(t, \tau) dt d\tau \right] d\eta d\xi$$

$$= \langle u(t, \tau), h(t, \tau) \rangle, \qquad (4)$$

where

$$h(t,\tau) = \int_{a}^{b} \int_{c}^{d} \int_{a}^{b} \int_{c}^{d} kR_{\xi\eta}(t,\tau)v(x,y) + \frac{\partial}{\partial x}kR_{\xi\eta}(t,\tau)\frac{\partial}{\partial x}v(x,y) + \frac{\partial}{\partial y}kR_{\xi\eta}(t,\tau)\frac{\partial}{\partial y}v(x,y) + \frac{\partial^{2}}{\partial x\partial y}kR_{\xi\eta}(t,\tau)\frac{\partial^{2}}{\partial x\partial y}v(x,y)d\eta d\xi dy dx.$$
 (5)

Thus, setting $m(x,y;t,\tau):=\int_a^b\int_c^dk(x,y;\xi,\eta)R_{\xi\eta}(t,\tau)d\eta d\xi$ from (5) and Lebesgue integral properties give that

$$\frac{\partial}{\partial t} m(x, y; t, \tau) = \int_{a}^{b} \int_{c}^{d} k(x, y; \xi, \eta) \frac{\partial}{\partial t} R_{\xi, \eta}(t, \tau) d\eta d\xi.$$

$$\frac{\partial}{\partial \tau} m(x, y; t, \tau) = \int_{a}^{b} \int_{c}^{d} k(x, y; \xi, \eta) \frac{\partial}{\partial \tau} R_{\xi \eta}(t, \tau) d\eta d\xi$$

$$\frac{\partial^{2}}{\partial t \partial \tau} m(x, y; t, \tau) = \int_{a}^{b} \int_{c}^{d} k(x, y; \xi, \eta) \frac{\partial}{\partial \tau} R_{\xi \eta}(t, \tau) d\eta d\xi,$$

and so it follows that

$$h(t,\tau) = \int_{a}^{b} \int_{c}^{d} [m(x,y;t,\tau)v(x,y) + \frac{\partial}{\partial x}m(x,y;t,\tau)\frac{\partial}{\partial x}v(x,y) + \frac{\partial}{\partial y}m(x,y;t,\tau)\frac{\partial}{\partial y}v(x,y) + \frac{\partial^{2}}{\partial x\partial y}m(x,y;t,\tau)\frac{\partial}{\partial x\partial y}v(x,y)]dxdy$$
$$= \langle v(\cdot,\cdot), m(\cdot,\cdot;t,\tau) \rangle . (6)$$

So that, from (4) and (6) we have

$$\mathbb{K}^* v(t,\tau) = \langle v(\cdot,\cdot), m(\cdot,\cdot;t,\tau) \rangle.$$

This completes the proof.

Remark. Let us consider the following classical Fredholm equation

$$u(x,y) - \lambda \int_a^b \int_c^d k(x,y;t, au) u(t, au) dt d au = f(x,y),$$

and let

$$(I - \lambda \mathbb{K})u = f, (7)$$

where I is identity operator, λ is parameter, and $\mathbb{K}u = \int_a^b \int_c^d k(x,y;t,\tau) u(t,\tau) \ dt d\tau$. Then, Lemma 4 above asserts that \mathbb{K} is well-defined and bounded. In a recent paper [7] Lees and Cui have shown that, if (p_i) is dense in Ω , $((I - \lambda \mathbb{K})^* \phi_j(p_i))$ is complete if and only if $I - \lambda \mathbb{K}$ is one-to-one, where $\phi_j(p_i) = R_{p_j}(p_i)$. By using this result with related properties of reproducing kernels of $W_2^2(\Omega)$, it is shown that u is decomposed in terms of reproducing kernels such as $u = \sum \tilde{f}_k \tilde{\psi}_k(p)$, where $\tilde{\psi}_k(p) = (p_i) = \sum_{j=1}^k \beta_{kj} \psi_j(p), \ \psi_j(p) = ((I - \lambda \mathbb{K})^* \phi_j(p)), \ \text{and} \ \tilde{f}_k = \sum_{j=1}^k \beta_{kj} f(p).$

References

- [1] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc.68(1950).
- [2] J. Benedetto and D. Walnut, Gabor frames for L^2 and related spaces, in wavelets : Mathematics and Applications, J. Benedetto and M. Frazier, eds., CRC Press, Boca Raton, FL.(1993) 97-162.
- [3] M. Cui, Analytic solutions for Fredholm integral equation of the second kind, Numer. Math. J. Chinese univ. vol 11 No.1 (1989)53-64.
- [4] On the best operator of interpolation in $W_2^1(a,b)$, Math. Numerica Sinica, 8 No. 2(1996) 209-216.
- [5] M. G. Cui, D. M. Lee, and J. G. Lee, Fourier Transforms and Wavelet Analysis, Kyung Moon Press, Seoul (2001).
- [6] D. M. Lee, J. G. Lee, and S. H. Yoon, A Construction of Multiresolution Analysis by Integral equations, Proc. Amer. Math. Soc.130(2002)3555-3563.
- [7] D. M. Lee, J. G. Lee, and M. G. Cui, Representation of solutions of Fredholm equations in $W_2^2(\Omega)$ of reproducing kernels, J. Korea Soc. Math. Ed. Ser. B: Pure Appl. Math.vol 11 No. 2(2004)131-136.
- [8] S. Saitoh , Integral transforms, reproducing kernels and their applications , Longman, Harlow (1997).
- [9] Theory of reproducing kernels and its applications, Longman Sci. Tech. Harlow (1988).

D. M. Lee, J. G. Lee

Department of Mathematics

Won Kwang University

344-2 Shinyongdong Ik-San

Chunbuk 570-749, Korea

E-mail: dmlee@wonkwang.ac.kr E-mail: jukolee@wonkwang.ac.kr

M. G. Cui

 $Harbin\ Institute\ of\ Technology$

(WEI HAI branch Institute)

264209 Wei Hai

Shandong, China(P.R.)

E-mail: cmgyfs@263.net