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REPRESENTATION OF INTEGRAL OPERATORS ON
W2(Q) OF REPRODUCING KERNELS

DonNG-MyuNG LEE, JEONG-GON LEE AND MING-GEN Cul

Abstract. We prove that if K* is adjoint operator on W2(), then
K*vu(t,7) =< v(-,-),m(-,t,7) >, v(x,y) € WF(Q) ; it is also re-

lated to the decomposition of solution of Fredholm equations.

1. Intorduction

In this paper we are concerned with representing the adjoint op-
erator K* on W2(Q0) = {u(z,y)|u(z,y) is absolutely continuous and

%1;‘, %%, —8’12—(% € L?(Q2)} of reproducing kernels :

K*v(t,7) =< v(-,-),m(-,t,7) >, v(z,y) € IVQQ(Q),

where Q = [a,b] x [c,d]. In the case of Wy (R), m(,) is known (see (3]
and the referenses given for that theorem).

We use Cui’s approach 3] to seek a good component m(-,-;t,7), re-
garded as an ingtegral of reproducing kernels on 2 and extend Cui’s
result of W, (R) to the case of W(€Q).

Throughout, L?(Q) denotes, as usual, the Hilbert space of all Lebesgue
square integrable functions on 2. The needed facts about reproducing

kernels can be found in [9].
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2. The Result

We now define, for u,v € W2(Q),

<u = // u(z auﬁv 8u@+ 9u 82v)d )
v w)v(e,y) ax 83: Oy 0y  Ox0y dxdy 7

as inner product on W2(f2) and norm ||u||W22 =< u,u >3,
We recall, see [4], that any u(z) € W}([a,b]) can be represented in
terms of a reproducing kernel such as u(z) =< u(-), R;(-) >, where
1
2sinh(b - a)

Our next result extends this formula to the case of Q = [a, b] x [c, d].

R®(y) = [cosh(y+x—a—b)+cosh(ly—z|+a—b)],y € [a,b].

Lemma 1. R,,(-,-) is a reproducing kernel of space W.2(Q),where
Ray() = RPCIR().

Proof. For any u € W(Q),
d b
<uls ) Ray() > = / dn / (u(E.7) Ray (E.1) + ub(€.m) Ry (€.
d b
- / dn{Ry (1) / (u(€, M) Ra(€) + (€, m)RL(E)e)de
b
LR (), / (! (&, M) R (£) + uly B (€)e)dE}.
Applying the reproducing properties of R,(£), we have
b
/ w(E.m) RalE) + s (6, ) Ro(E)edE =< u(-, ), Ral") >= u(z.m).
b 0
[ € MRAE)+ € mR €Jeds =< ) () = )
So that,

d
Ul Rayl(1) 5= [ (i) Ry(n) + ) B ) e
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Finally, using the definition of reproducing kernels to get the conclusion.

From the preceding results and the classical Fredholm equation, we

have the following application. O

Lemma 2. Let (z,y;t,7) € Q x Q and let k(z,y;t,7) € L}(Q) for
each fixed (z,y) € Q. If, for each fixed (¢,7),k(z,y;t,7) is absolutely
continuous on 2 and k, %, g—’;, a’f;y € L%(Q), then the integral operator

K on W2(2) defined by

b d
Ku(zx,y) 12/ / k(z,y;t, 7)u(t, 7)drdt,
a C

for u(z,y) € W2(Q) is well-defined and bounded.

Proof. First note that, since k is absolutely continuous, we have

k(z,y;t,7) / / e §n,trdnd§+/ % k(& ¢ t, T)dE
8
+/C 8—nk(a it 7)dn + k(a, ¢ t,T).

Then, the definition of Fredholm equations and an elementary advanced

calculus argument allow us to compute

[1Ku(b;, c) — Ku( az,c)H

|/ / / gerE Gt ut, r)dedrdt|
< d_c/a / /1/ Iggk(g,y;t,7)u(t,7)|d§dyd7dt
ic/b/d/d/bﬂ/y a?j) K(E,mst, 7)dnult, )| dedydrdt
_d—c//// % k(& yit, T)u(t, 7)|dédydrdt

+/a / / /ai'|a£ank(§,n;t,T)u(t,T)ydndngdt.
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So that, by the absolute continuity; for ¢ > 0,>"" (b — a;) < .
implies that

> Kt c) = Kafar, o)

—d_c////a,,b)| k(& yit, T)u(t, 7)|dedydrdt
S L

which shows that Ku(z, ¢) is absolutely continuous.

(& m;t,m)ult, 7)|dndédrdt < e.

agank

Using the same method, we obtain the absolute continuity of Ku(a, y).
Consequently, it follows easily that a%Ku(a;, Y), B%Ku(:c, y), and
%KU(I?, y) € L*(Q), which implies that Ku(z,y) € W(Q).

Next, to show the boundedness of K, let u(z,y) € W2(2). Then we

have

< Ku,Ku >= / / {(Ku(z,y))? (88 Ku(z,y))?
+(5, KU(m y)) +(

//// (O3t )) + (—k(ar yit, 7))’

(—k(l‘ yvth)) + (al‘alj

x/a /C (u(t, 7))%drdt

= ]\/IHUH%Q(Q)a

KU(I y))?}drdy

k(z,y;t,7))%|drdtdydz

where M = [, [k* + (a%k)2 + (Z'%k)Q + (ngyk)Q]da, which completes
the proof. U

Our next result shows that the reproducing kernels of W2(Q) actually

characterize the adjoint operator K*.
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Theorem 3. Let K* be adjoint operator of K on W2(Q). Then for
v(z,y) € WE(9Q),

K*U(th) =< U('7 ')am('a ';taT) >,

where

S—

m(z,y;t,7) = k(x,y;&,m) Req(t, T)dEdn. (3
Q

Proof. First note that, for fixed (z,y;t,7), k(z,y; &, n) Rey(t, 7) is inte-
grable with respect to (£,7) and has partial derivatives for almost all
t € [a,b] by the properties of differentiating Lebesgue integrals with re-
spect to absolute continuity.

So that, for u,v € W2(£2) we have

0. 0
<Ku,v> = // // k +55k51,‘- Egké—y-v

&Ea a a =——v)dydzu(§, n)ddn

b 9,0 9 9
- LA[/G ; (kl)‘f—'a—xk?*a—i +5§k5§’0

0> 0?
Bxay 920y " 020y 83:8

a . 0

_+6x8yk8x8y

0 o
/ / i(t, ) Ren(t, 7) + BN (t,T)&—)ERE,?(t,T)

d 2 2
5= Ren(t,7) + gos=ult, 7)o Rey (1, 7)dtdr|dnd

= <u(t,7),h(t,7) >, (4)

v)dydz] < u(&,n), Rey(t, 7) > dédn

v)dydr]

+—07u(t T)=—
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/ / / / kREn (t,Tv(z,y) + kR&,(t ) iv(m,y)

ket 7)51(z)

where

o2 92
tas 5y Fz5y Fen(t, T) 35—~ 5s v(z,y)dndédydz. (5)

Thus, setting m(z, y;t,7) := fa fc k(x,y; €, 1) Rep(t, 7)dnd€ from (5) and
Lebesgue integral properties give that

0 b 0
@it r) = [ k(e €on) o Re(t,m)dnde.

- -t)—/b/du €,1)2 Reg(t, 7).
aTm:L‘al% s T - L ). CF,y,f,n o7 enl\l, T 775
82 d 82
atarm(:”’y;“) = //k(z,y;{,n)%}?gn(tﬁ)dndf,

and so it follows that

) = [ / m(z, it 7)ol ) + ooz, ) 5oz, )

+-a—ym(x Ui by T) (

= (,),m(,,t,r)>.(6)

0
, 't,T)a oy v(z,y)]|dzdy

H?
Oxdy
So that, from (4) and (6) we have

K v(t,7) =< v(,-),m(-,st,7) > .

This completes the proof. O

Remark. Let us consider the following classical Fredholm equation

b d
u(z,y) — )\/ / k(z,y;t, T)u(t, 7)dtdr = f(z,v),
and let
(I = \K)u = f. (7)
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where Iis identity operator, Ais parameter,andKu = ff fcdk(a:,y;t,T)
u(t,7) dtdr. Then, Lemma 4 above asserts that K is well-defined and
bounded. In a recent paper [7] Lees and Cui have shown that, if (p;)
is dense in , (I — MK)*¢;(p;)) is complete if and only if I — AK is
one-to-one, where ¢;(p;) = R, (p;). By using this result with related

properties of reproducing kernels of W2(Q), it is shown that u is de-

composed in terms of reproducing kernels such as u = ) Fetor(p),

where Yi(p = (7)) = Y5—1 Brits (), ¥5(p) = ((I — AK)*¢;(p)), and

fr =51 Bri f(p)- O
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