The ethnic difference of the prevalence of SfaN polymorphism in the nonsyndromic cleft palate

비증후군성 구개열에서 SfaN1 polymorphism발현빈도의 인종적 차이에 관한 연구

  • Kim, Myung-Hee (Department of Orthodontics, College of Dentistry, Seoul National University) ;
  • Nahm, Dong-Seok (Department of Orthodontics, College of Dentistry, Seoul National University) ;
  • Rotaru, Horatiu (Department of Craniomaxillofacial Surgery, Iuliu Hatieganu University of Medicine and Pharmacy) ;
  • Hurubeanu, Lucia (Department of Craniomaxillofacial Surgery, Iuliu Hatieganu University of Medicine and Pharmacy) ;
  • Choi, Je-Yong (Department of Biochemistry, College of Medicine, Kyoungbook University) ;
  • Chae, Chang-Hoon (Biocodon Inc.,) ;
  • Kim, Seong-Gon (Department of Oral and Maxillofacial Surgery, Sacred Heart Hospital, Hallym University)
  • 최명희 (서울대학교 치과대학 교정학 교실) ;
  • 남동석 (서울대학교 치과대학 교정학 교실) ;
  • ;
  • ;
  • 최제용 (경북대학교 의과대학 생화학 교실) ;
  • 재창훈 (대전바이오코돈) ;
  • 김성곤 (한림대학교 성심병원 구강악안면외과)
  • Published : 2004.06.01

Abstract

Nonsyndromic cleft lip and/or palate (NSCLP) is one of the most common congenital deformities and its prevalence in Far East Asia, such as within Korean and Japanese populations, is relatively high. However, in the eastern part of Europe, clefts are relatively rare situations. These ethnic differences infer a genetic background of the disease. The objective of this study was to compare the frequency of single nucleotide polymorphism (SNP) in $TGF-{\beta}3$ between Korean and Romanian cleft families. Korean cleft families samples were collected from twenty-six families (n=78) and Romanian cleft families samples were collected from eighteen families (n=41). For sequencing, the blood or saliva of the subjects was sampled. A single nucleotide polymorphism was observed in the intron 5 of $TGF-{\beta}3$ (Al8141G). The frequency of each allele was significantly different between the Korean and Romanian samples. The Ah allele was present in 18 out of 78 Korean samples (23.1%) and in 27 out of 41 Romanian samples (65.9%). The AG was present in 27 (34.6%) out of 78 Koreans and in 13 (31.7%) out of 41 Romanians. The GG was found in 33 (42.3%) Koreans and in 1 (2.4%) Romanian. The difference between the groups was significant (p<0.001). In conclusion, the frequency of observed SNP was significantly different between the two countries. SNP in $TGF-{\beta}3$ in the Korean population seemed to have a higher possibility of occurrence for nonsyndromic cleft palate than the Romanian population.

비증후군성 구순구개열은 가장 빈도가 높은 선천성 기형 중의 하나로 특히 한국이나 일본과 같은 극동 지방에서 높은 발생율을 보이고 동유럽에서는 드물게 보고되고 있다. 이러한 인종에 따른 차이는 이 질환에 유전적인 배경이 있음을 의미한다. 본 연구의 목적은 한국인의 비증후군성 구개열과 연관이 있다고 알려진 SfaN1 단일 염기 다형성증의 발현빈도가 한극인 구개열 가족과 루마니아 구순구개열 가족 사이에 통계적으로 유의할만한 차이가 있는지를 알아보기 위하여 시행하였다. 한국인 26가족과 루마니아 18가족을 대상으로 하였다. 전체 인원수는 한국인의 경우 78명이었고 루마니아의 경우 41명이었다. 유전자 서열분석에 사용된 샘플은 각 참여자의 혈액이나 타액을 채취하여 분석하였다. SfaN1 단일 염기 다형성 증은 $TGF-{\beta}3$ 유전자의 5번 인트론에서 관찰된다 (A18141G) 결과를 보면 한국인과 루마니아인의 비증후군성 구개열 가족사이에는 통계적으로 유의할만한 차이 가 인지되었다. 전체 샘플 중에서 AA allele는 한국인에서는 18명(23.1%)이었으나 루마니아는 27명(65.9%)이었다. AS allele는 한국인에서는 27명 (34.6%)이었으나 루마니아에서는 13명 (31.7%)이었다. GG allele는 한국인에서는 33명 (42.3%)이었으나 루마니아에서는 1명 (2.4%)이었다. 두 집단 사이의 차이는 통계적으로 유의하였다 (p<0.001). 결론적으로 한국인과 루마니아인의 비증후군성 구개열 가족 사이에 SfaN1 단일 염기 다형성증의 발현빈도는 한국인에서 통계적으로 유의할만하게 높게 나타났으며, 이는 한국에서 루마니아보다 비증후군성 구개열의 빈도가 높게 나타나는 현상을 부분적으로 설명하여 주는 것으로 사료된다.

Keywords

References

  1. Romitti PA, Lidral AC, Munger RG, et al. Candidate genes for nonsyndromic cleft lip and palate and maternal cigarette smoking and alcohol consumption: evaluation of genotype-environment interaction from a population-based case-control study of orofacial clefts. Teratology 1999 : 59 : 39-50
  2. Maestri NE, Beaty TH, Hetmanski J, et al. Application of transmission disequilibrium tests to nonsyndromic oral clefts : Including candidates genes and environmental exposures in the models. Am J Med Genet 1997 : 73 : 337-44
  3. Werler MM, Lammer EJ, Rosenberg L, Mitchell AA. Maternal cigarette smoking during pregnancy in relation to oral clefts. Am J Epidemiol 1990 : 132 : 926-32.
  4. Murray JC. Face facts : genes, environment, and clefts. Am J Hum Genet 1995 : 57 : 227-32
  5. Kaartinen V, Voncken JW, Shuler C, et al.Abnormal lung development and cleft palate in mice lacking TGF-$\beta$3 indicates defects of epithelial-mesenchymal interaction. Nat Genet 1995 : 11 : 415-21
  6. Proetzel G, Pawlowski SA, Wiles MV, et al. Transforming growth factor-$\beta$3 is required for secondary palate fusion. Nat Genet 1995 : 11 : 409-14
  7. Lidral AC, Romitti PA, Basart AM, et al. Association of Msx1 and TGFB3 with nonsyndromic clefting in humans. Am J Hum Genet 1998 : 63 : 557-68
  8. Lewanda AF, Jabs EW. Genetics of craniofacial disorders. Curr Opin Pediatr 1994 : 6 : 690-7
  9. Wyszynski DF, Beaty TH, Maestri NE. Genetics of nonsyndromic oral clefts revisited. Cleft Palate Craniofac J 1996 : 33: 406-17
  10. Sato F, Natsume N, Machido J, Suzuki S, Kawai T. Association between transforming growth factor beta 3 and cleft lip and/or palate in the Japanese population. Plast Reconstr Surg 2001 : 1909-10
  11. Lidral AC, Murray JC, Buetow K, et al. Studies of the candidate genes TGFB2, MSX1, TGFA, and TGFB3 in the etiology of cleft lip and palate in the Philippines. Cleft Palate Craniofac J 1997 : 34 :1-6
  12. Christensen K, Mitchell LE. Familial recurrence-pattern analysis of nonsyndromic isolated cleft palate-A Danish registry study. Am J Hum Genet 1996 : 58 : 182-190
  13. Riedar MJ, Livingston RJ, Braun AC, et al. NIEHS-SNPs, Environmental genome project, NIEHS ES15478, Department of Genome Science, Seattle, WA, 2002
  14. Kim MH, Choi JY, Nahm DS. Polymorphism of transforming growth factor-$\beta$3 gene and risk of nonsyndromic cleft lip and palate in Korean. J Biochem Mol Bioi, 2003 .: 36 : 533-537
  15. Sporn MB, Roberts AB. The transforming growth factor-betas: past, present, and future. Ann NY Acad Sci. 1990 : 593 : 1-6
  16. Gato A, Martinez ML, Tudela C, et. al. TGF-beta 3-induced chondroitin sulphate proteoglycan mediates plalatal shelf adhesion. Dev Biol 2002 : 250 : 393-405
  17. Sun D, Vanderburg CR, Odierna GS, Hay ED. TGF-$\beta$3 promotes transformation of chicken palate medial edge epithelium to mesenchyme in vitro. Development 1998 : 125.: 95-105
  18. Taya Y, O'Kane S, Ferguson MW. Pathogenesis of cleft palate in TGF-$\beta$3 knockout mice. Development 1999 : 126 : 3869-79
  19. Miettinen PJ, Chin JR, Shum L, et al. Epidermal growth factor receptor function is necessary for normal craniofacial development and palate closure. Nat Genet 1999 : 22 : 69-73
  20. Abbott BD, Birnbaum LS. Retinoic acid-induced alterations in the expression of growth factors in embryonic mouse palatal shelves. Teratology 1990 : 42 : 597-610
  21. Abbott BD, Adamson ED, Pratt RM. Retinoic acid alters EGF receptor expression during palatogenesis. Development 1988 : 102: 853-867
  22. Dixon MJ, Garner J, Ferguson MW. Immunolocalization of epidermal growth factor (EGF), EGF receptor and transforming growth factor alpha (TGF alpha) during murine palatogenesis in vivo and in vitro. Anat Embryol 1991 : 184 : 83-91.
  23. Stromblad S, Andersson G. The coupling between transforming growth factor-alpha and the epidermal growth factor receptor during rat liver regeneration. Exp Cell Res 1993 : 204 : 321-8
  24. Jacobberger JW, Sizemore N, Gorodeski G, Rorke EA. Transforming growth factor beta regulation of epidermal growth factor receptor in ectocervical epithelial cells. Exp Cell Res 1995 : 220 : 390-6
  25. Lander ES, Schork NJ. Genetic dissection of complex traits. Science 1994 : 265 : 2037-48
  26. Marazita ML, Hu DN, Spence MA, Liu YE, Melnick M. Cleft lip with or without cleft palate in Shanghai, China : Evidence for an autosomal major locus. Am J Hum Genet 1992 : 51 : 648-53
  27. Webb KE, Martin JF, Cotton J, Erusalimsky JD, Humphries SE. The 4830C>A polymorphism within intron 5 affects the pattern of alternative splicing occurring within exon 6 of the thrombopoietin gene. Exp Hematol 2003 : 31 : 488-94