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Abstract

Integrated genomics refers to the use of large—scale,
systematically collected data from various sources
to address biological and biomedical problems, A
critical ingredient to a successful research program
in integrated genomics is the establishment of an
effective computational infrastructure, In this review,
we suggest that the computational infrastructure
challenges include developing tools for heterogeneous
data organization and access, innovating techniques
for combining the results of different analyses, and
establishing a theoretical framework for integrating
biological and quantitative models. For each of the
three areas — data integration, analyses integration,
and model integration — we review some of the current
progress and suggest new topics of research, We argue
that the primary computational challenges lie in
developing sound theoretical foundations for
understanding the genome rather than simply the
development of algorithms and programs,
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Introduction

The era of genomics was brought into prominence with
the initiation of the Human Genome Project in October
of 1990. The Human Genome Project was declared
complete in April 2003 after 13 years of international effort
(Collins, Morgan, and Patrinos, 2003). Many other genome
projects have been completed with more than 100
(non—viral) whole genomes already available and many
more genomes in the pipeline. Current sequencing
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capacity is such that a relatively medium-sized genome
like that of Drosophila pseudoobscura can be completed
by a single company, essentially in one month, As
genomic sequencing has become routine, attention has
begun 1o focus on so—called post—genomic technologies
including large—scale transcript assays, proteomics,
combinatorial chemistry, and so on {with an unfortunate
accompanying proliferation of neologisms including:
transcriptome, proteome, metabolome, etc.), It is too
premature to put strong emphasis on any particular
sub—field such as “proteomics” or “functional genomics”
but it is clear all of these activities involve an important
principle: large—scale, high—throughput, systematic
collection of data without explicit predefined hypotheses,
In this review, we will refer to all such activities “genomic
sciences” or “genomic approaches,’

As mentioned, genomic approaches to biological
problems invoive the idea of systematic data collection
at all levels of information, including the genome, the
state of the cell (e.g., the transcriptome, the proteome,
the metabolome, etc.), and the phenotype (e.g., anatomy,
physiology, clinical, etc.). Genomic approaches have
several important advantages. First, they leverage
high—throughput technologies and streamlined
production processes to obtain data at a far higher speed
and lower expense than is possible through individual
experimentation, Second, by generating a large collection
of data and making it publicly available, they allow the
research community access to resources that are relevant
to the original problem as well as to many innovative
and unanticipated problems. Most importantly, the
availability of large—scale systematic data allows for new
kinds of inferences and discoveries that can be only
made when the entire data is available, For example,
in recent years, genomic technologies have been
increasingly used to address human disease specific
problems such as typing hidden variation in human
cancer (e.g., Alizadeh ef al,, 2000; West ef al,, 2001),
tracking infectious disease agents and hosts (e.g.,
Metzker ef af, 2002; Hillis, 2000), discovering new drug
targets (e.g., Foth et al., 2003; Kissinger ef al., 2002),
discovering new genes and molecular processes
involved in diseases, and many other innovative
applications,

The profusion of various large—scale data has led to
the coining of the phrase “Integrated Genomics.” This
phrase, as used in various literatures, is associated with
a vague (but exciting) hope that, given large quantities
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of genome—scale data collected at different levels of
biological organization and from a variety of organisms,
we should be able to utilize all this information in a
comprehensive manner,

The grand answer to such a challenge “here is a way
that anybody asking any biological question can bring
all evidence to bear” is obviously impossible and really
speaks to how science is carried out in general, However,
from a computational viewpoint, we might envision an
integrated computing environment for genome—scale
modeling in which a scientist would be able to describe
a hypothesis to be tested as a precise combination of
model components. Each specification would be
computable and would be coupled with appropriate data
sources to score the hypothesis. The computable
components would be modular such that different ideas
or data expressed as these modules could be
interchangeably combined to construct a grand
computable hypothesis and test of hypothesis. For
example, one should be able to specify various
hypotheses about signal transduction pathways, which
in turn could be used to compute a genome—wide
expression pattern, this expression pattern serving as
input into a model relating the expression pattern to
phenotypic data,

This, of course, is a rather lofty goal given that so
many of the biological and computational questions
relevant to building such a system are still unanswered.
Rather than focusing on the details of what such a system
might look like, we instead focus our discussion on a
number of “integrative principles” that might be employed
as we work towards such a goal. At the most basic level
we need tools and systems for Data Infegration including
signal processing of the primary data (e.g., microarray
measurements), statistical characterization (e.g., image
analysis from radiological measurements, text mining),
and organization (e.g., integrated databases). At the next
level we need Analysis Infegration wherein we can employ
a multitude of analysis tools for biological inference but
in such a way that different analyses and/or their outputs
can be combined, Finally, we need tools and systems
for Model Integraftion. |deally, the various analysis tools
should incorporate biological process models as their
principles. Similarly, their outputs should either explicitly
or implicitly suggest new biological process models. (e.g.,
an estimate of gene regulatory network should then
translate into a new model of molecular interactions and
pathways), These models then should be combinable
either in their output states or as principles for analyses.
For example, two different models for a gene family, say
one based on a Hidden Markov Model and another based
on secondary structure, should be combinable for

function prediction.

The goal of this review is to explore some of the
computational challenges within each of these three areas
that must be met if we are to practice a truly integrative
genomics, In particular, we discuss our vision of the
principles and accompanying computational framework
that would allow for a theoretically sound, uniform
approach to integrated genomic analyses. In addition
to discussing these integrative principles, we highlight
current research and future challenges for establishing
a computational infrastructure to meet the demands of
integrated large—scale data analysis.

Data Integration

The ultimate goal of data integration in biocinformatics
is to provide analysis tools with unified access to the
great variety of large—scale data. As mentioned in the
introduction, there are three classes of problems that
need to be solved by a computational system for data
integration, The first class of problems is what we might
call “instrumentation problems.” These are computational
problems associated with obtaining the most accurate
and efficient measurements from organisms. The second
class of problems might be called “data characterization
problems,” These problems involve transforming and
encapsulating primary data in an organized and
comparable manner. For example, taking functional MRI
data and identifying morphological landmarks in such
a way to make different individual measurements
comparable is a data characterization problem (e.g.,
Kennedy ef al,, 2002). The third class of problems is
the more familiar problem of establishing a database
system for easy access to heterogeneous data,

Data Acquisition

The main tradeoff in many high—throughput technologies
is that between volume of data and accuracy of data,
Some high—throughput technologies such as standard
multiplexed sequencing have been sufficiently
standardized such that there is no real tradeoff between
data volume and data quality. However, for the majority
of newer technologies such as transcript assays,
proteomics, microarray biochemistry, and sequencing
by hybridization, obtaining reliable instrumentation is still
a large challenge. An example of this is the computations
required to obtain reliable microarray gene expression
measurements, For cDNA type of arrays, many different
methods have been presented for correcting for
array—to—array standardization, dye/channel bias,
robotic pin bias, and so on (e.g., Kerr and Churchill,
2001; Yang ef al,, 2002). In practice, all of these factors



play a great role in the array measurements; yet there
are still significant sources of error and there is a need
to develop new computational tools especially with
respect to noise reduction and feature recognition at the
primary image level (e.g., de—trend analysis). Similar
problems arise for 2D protein gels as well as for primary
signal processing from a mass spectroscopy instrument
(Efrat et al,, 2002). As a third example, detection of
genomic alteration by array Comparative Genomic
Hybridization (aCGH) is quickly becoming an essential
tool for cancer biology. However, there are many
computational and statistical challenges associated with
aCGH, such as reliable copy number determination and
extrapolation of the clone data to genomic regions
(Mantripragada et a/,, 2004; Wang and Guo, 2004),

It is expected that many of these problems will be
solved soon with a combination of better physical
instruments and algorithms, For example, the early
automated sequencers also had many instrumentation
problems with both the device itself and the algorithms
that interpreted the spectra. However, there is also another
important family of problems that require more research,
namely computational support for developing new
high—throughput technologies, For example, Sequencing
By Hybridization (SBH) is an important strategy for
reaching the next level of efficiency in genomics (Ben—Dor
et al,, 2001). The design of a proper set of oligomers
that will minimize cross hybridizations and allow efficient
assembly is still an unresolved problem, In particular,
many of the current approaches do not seem to take
into account that much of the genome consists of related
gene families or related sequence pieces, This kind of
computational support for data acquisition is a weakly
developed area that is likely to be critical for continued
development of genomic technologies, Another case
example can be found in computational support for
phenotyping, Ultimately, the real interest in genomic
approaches is in associating the rapidly obtained
genomics data to phenotypic predictions such as risk
for cancer recurrence, High—throughput phenotyping,
especially at the anatomical level, is a huge bottieneck
in allowing sufficient data collection, Image analysis,
image reconstruction, and image—based signal
processing are all expected to be important areas of
computational development (Yarrow ef a/, 2003) in this
context,

Data Characterization and Encapsulation

In information processing theory, a distinction is made
between “data” and “information”, where data refers to
the primary measurements (after correction for
instrumentation problems) and information refers to a
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transformation of the data into an organized structure
that can be used for higher level inferences {so—calied
“knowledge”). A canonical problem in transforming data
to information is processing of text found in scientific
literature, From the computational point of view, the text
is unstructured data that must be organized into
specifically typed information, For example, we may be
interested in collecting information to construct an overall
view of Drosophila development, Each primary text must
be mined for gene names, mutations, possible phenotypic
effects, possible gene interactions, and so on, The steps
involved are: (1) developing annotation standards and
software tools for annotating training documents with
respect their syntactic structure and semantic content
(especially tied to specific domain knowledge, say
Drosophila development); (2) curating a training set
following the syntactic rules; and (3) developing
algorithms for automatic training of components that will
recognize the relevant syntactic and semantic structures
accurately in new documents. In many ways, these
problems point to a model driven (or more generically,
knowledge driven) characterization of the primary data,
That is, to determine the important components of a journal
article, we already need some model of the knowledge
ontology. We can analogize this to similar ideas in
mathematical statistics where the idea of a “sufficient
statistic” is to obtain a function of the data that is sufficient
to characterize some probability distribution (i.e., a model),
In other words, data characterization involves
transformation and reduction of data to the most relevant
bits of biological information, But, we cannot determine
what is most relevant without a prior knowledge model,
Using programming jargon we might call this process
of transforming and extracting primary data to a
representation that provides sufficient and efficient
information vis—a—vis some prior model (or even a vaguely
determined set of prior models), data encapsulation. We
want our data encapsulated in such a way that only
the interface necessary for knowledge modeling in any
particular domain is exposed, An important aspect of
encapsulation is what we might call “context
independence”. Given some primary measurements, we
would like to extract information that is as context
independent as possible, For example, one might
consider expression microarray normalization as a
process of making the measurement values context
independent of particular arrays. The act of attaching
functional annotation to a particular subsequence of the
genome, say calling it an exon, is also an act that makes
a particular stretch of sequence acquire a context
independent property, namely that of an exon,
A dual notion to making data context independent is
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making data “comparable”. By this we mean charac—
terizing the data in such a way that the representation
in one measurement is comparable to another
measurement, A concrete example of this is sequence
alignment of multiple genomic strings. Sequence
alignment makes the positions comparable (positional
homology) such that we can compute quantities like
distances between the two strings, The alignments also
provide context independence for individual nucleotides
in the sense that we can commonly discuss particular
nucleotides independent of their context within each
string. We return to a discussion of context independence
and comparability in the section on Model Integration,

As mentioned previously, phenotyping is an important
component of integrative genomics, A relatively straightforward
phenotyping problem is the characterization of anatomical
image data. Here we first have the challenge of
encapsulating a large amount of information, i.e., pixels,
in a biologically relevant manner. Suppose the data of
interest are images of the brain. Our prior knowledge
model includes the general geometry of the brain (oval
3D structure) and information about gross anatomy. This
knowledge must be used to segment the image
(encapsulate the data) into relevant anatomical regions.
Given such segmentation we would next want to allow
comparison between different brain images (sampled
from different individuals or at different times), which might
require isolating homologous landmarks, coordinatizing
the landmarks, and transforming different coordinates
from different images into a common system (Bookstein,
1991). Many phenotypic data characterization problems
are even more complex. For example, in neurogenomics
we are interested in genomic basis of complex phenotypes
some of which may be only measured through behavioral
assays such as memory, navigation, conditioning, and
so on, In these cases, the very basic representation of
data is a challenge. Many of these problems are similar
to challenges that are found in systematics and taxonomy.
Taking advantage of the many methods and ideas that
have been developed in these literatures will aid greatly
in our task of moving towards an integrative genomics.

Data Management and Accessibility

The last class of problems in data integration is the more
common problem of establishing databases and
connecting heterogeneous data sources. While there has
been great progress in databases for genomics, this area
continues to remain a major challenge (Stein, 2003), Much
of the information associated with the Human Genome
Project (HGP) and similar projects on other organisms
is served through controlled Web interfaces rather than
by direct access to conventional databases. Many

difficulties arise from a lack of coordinated vocabularies.
Recent efforts on developing ontologies will certainly help
with this problem (Ashburner et a/, 2000; Harris et al,,
2004). A serious challenge is to enable biologists to cope
with frequent changes of assumptions, experimental
hypotheses, and techniques; biological data sources are
often loosely coupled with voluntary quality and standards
control and not uncommon introduction of completely
novel data types. The traditional data integration scenario
starts with the /oca/ schemas of several actual data
sources and one global schema against which queries
are asked, In the warehousing approach a database
corresponding to the global schema is built, Warehousing,
and more generally building derived value—added
databases, is an important aspect of the landscape of
biological data, For example, the GUS (Genomics Unified
Schema) developed at the University of Pennsylvania
is a warehousing scheme designed to integrate biological
sequences, annotations, gene expression, gene
regulation, and proteomics under the central dogma of
biology: Genes to RNA to Protein (Davidson ef a/, 2001).
An important principle here is that by modeling the data
scheme around the most invariant central theory for the
types of data, we are able to derive consistent schema
for heterogeneous data. By itself warehousing is not a
satisfactory solution in the integration scenarios we
consider here because there is too much volatility and
need for flexibility (Stein, 2003). What is required is a
set of approaches that promote peer data integration,
where there is no global schema but a mapping between
various different data schema. An especially important
challenge for peer data integration is tools for dealing
with data redundancy (Deutsch and Tannen, 2003) and
semi—automatically discovering data relations by schema
matching and mapping (Rahm and Bernstein, 2001),

Analysis Integration

The motivating observation behind analysis integration
is that biological phenomena are commonly context
dependent and any single inference based on marginal
measurements tends to be weak with both large false
positives and false negatives, For example, in Kim et
al, (2000) we developed an algorithm for predicting novel
multi—transmembrane proteins. However, application of
this algorithm to genomic data can result in 10% of the
potential genes scoring positive, which would translate
into thousands of genes for the Drosophila genome.
Overcoming problems like this requires incorporating
additional types of analyses such as clustering candidates
into gene families, considering codon usage, negative
selection against known databases, and so on. Ideally,



integration of all of these separate procedures should
be as seamless as possible,

In order to achieve such seamless integration between
different methods our analytical tools need to meet at
least three criteria, First, the output of different analyses
must be compatible in the sense that they must allow
conjunction of the results, Where existing software tools
do not provide for easy conjunctions, translators must
be designed to make the output of various algorithms
compatible. For example, the output of two different
programs for exon prediction could be either
sub—sequences or categorical labels (e.g., yes/no) over
the (partially) shared input set. Thus the outputs can
be combined because the programs share the same
type of output or because they share the same type
of inputs and the outputs are functions over the input
types. Second, there must be a value scheme for
quantifying the reliability of each output, such as
probabilities, ranks, scores, and so on, Finally, there must
be a way of computing a reasonable function (say, some
calcuius) ot combined value schemes in order to
characterize the acceptability of given hypotheses under
combined analyses, The last two components allow us
to combine heterogeneous algorithm/analyses results,
The most natural approach is to adopt a probabilistic
interpretation of the value scheme, which will allows us
to use existing machinery from probability theory for the
value calculus,

We note that combining inference from different
analyses requires the consideration of interactions of
different biologically—based analysis schemes, not just
some algorithmic scheme for combining analyses, For
example, given a difficult optimization problem such as
the maximum likelihood phylogeny estimation (cf,
Felsenstein, 2003) one might create a strategy of
combining the results of various heuristic algorithms,
However, this is different from the problem of maximizing
the probability of obtaining the correct phylogeny, which
might be best approached by analyzing different data
sources as well as incorporating any constraints from
prior biological knowledge. Thus, any value scheme
attached to the results should be based on some
reasonable principle of relating the output to the biological
goal, and not just on algorithmic considerations,

Designing value schemes

Two of the most important ways in which values could
be assigned to outputs are the following:

1) A stochastic model is chosen for the process producing
the input data, The value associated with an output
is then the probability that the particular output is
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produced. For example, in a pairwise alignment
problem, we could define an underlying stochastic
process that transforms an unknown common string
into the two given strings (or, equivalently, one of the
given strings into the other) with specific rates of
insertions, deletions and substitutions, The value or
score associated with an alignment would then be
the probability that the alignment represents a
homology of the process. Actual alignment scoring
schemes in use do correspond, modulo some cosmetic
transiation, to this process view, As another example,
in phylogeny estimation a stochastic model such as
the Jukes—Cantor model or the Kimura 2—parameter
model is chosen (Felsenstein, 2003). The likelihood
of a particular tree topology with particular edge lengths
is proportional to the probability that this choice would
produce the observed data (assuming that the prior
probabilities are uniform),

2) The value associated with an output is its significance,
i.e., the (unjiikelihood of observing this output pattern
in a suitable null model, The null model for DNA
sequences could be sequences generated as [id,
random variables, sequences sampled uniformly from
a language generated by a suitably defined grammar,
sequences produced by simulating a suitable
evolutionary process (if the evolutionary relationship
between the taxa is understood), etc. For other objects
such as RNA or protein secondary structures
appropriate null models have to be defined based
on the context,

We review some examples of model—based and
null-hypothesis based value schemes below.

Model—-based value schemes

Bioinformatics algorithms need to embody more explicit
generative models of the data if their results are to be
integrated following sound probabilistic principles. One
example of where this has already been done is the
use of hidden Markov models (HMMs) for biological
sequence modeling and alignment (Durbin ef a/, 1998),
Heuristic alignment programs like BLAST can be seen
as approximations of the more expensive full dynamic
programming algorithms used with HMMs, However,
HMMs in their basic form do not constitute a sufficiently
flexible structure for analysis combination, Fortunately,
HMMs are members of the broader class of probabilistic
graphical models (Lauritzen, 1996) that includes Bayes'
nets, Markov random fields, and (under appropriate
interpretation) probabilistic grammars. One problem is
that typical models with sufficient flexibility can be complex
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with large numbers of parameters, These parameters
can be difficult to estimate and even if the parameter
values are known the model can be difficult to compute,
Thus, one key challenge is how to efficiently compute
the probabilities. There are several possible approaches,
including approximations, compacting (computing
equivalence classes), computing marginal distributions,
and using conditional distributions,

The problem of maximum likelihood estimation of
phylogenies has been considered a notoriously difficult
computational problem in the bioinformatics literature
(reviewed in Felsenstein, 2003). Part of the argument
is that even for a fixed choice of parameter values,
computing the probability of a particular set of
observations at the tips requires exponential time if done
in a brute—force manner, By setting up an appropriate
metric space for the set of possible modeis, analyzing
the structural properties of the probability landscape over
this metric space, and using the well-developed theory
of approximation algorithms, one can show that it is
possible to produce guaranteed approximations to the
maximum likelihood for simple stochastic models of
evolution (Farach and Kannan, 1999; Cryan ef al, 1998),
One would like to extend these ideas to produce all choices
of parameter values that produce high probabilities for
the observed outputs and extend them to more complex
model families,

Several general schemes are in common use for
obtaining marginal probabilities from stochastic
processes relatively efficiently including Markov Chain
Monte Carlo (MCMC), Gibbs sampling, and Expectation
Maximization (EM), However, actual efficiency and
implementation is case—dependent, Conditional
distributions are also commonly used in computing
random variables (Gentle, 2003). The idea here is to
find an easily computable distribution that is a dominating
distribution for the domain of the random variable we
desire. The desired distribution may be computed
conditional on the dominating distribution, Application
of all of these techniques to computational biology
problems is still in infancy.

Null hypothesis—based value schemes

BLAST is perhaps the most famous program that
produces value schemes in its output that rely on a null
hypothesis. The null hypothesis used by BLAST is a fairly
simple one — sequences generated position by position
in 7/ d fashion. In some applications an overly simple
null hypothesis can artificially lower the “background
signal” level thereby causing us to misread too many
things as strong signals, and thus become inundated
with too much signal. As an example, the BLAST statistics

do not reflect the fact that all of the sequences in the
databases have a dependency structure imposed by
their evolutionary history, Thus if the researcher would
like to assess the probability of getting a hit of score
X if one were to search all molecules in life (as opposed
to all random sequences), the resulting p—value would
be quite different. The algorithmic difficulty with a more
sophisticated null hypothesis is that computing the
probability can be very hard, For instance, one can easily
generate the null distribution that corresponds to a
Jukes—Cantor process, but uniformly sampling strings
of a certain length generated by a grammar is a difficult
problem,

Using value schemes to integrate algorithmic analysis

As mentioned above, once analysis algorithms produce
probability scores for the results vis—a—vis the focused
biological inference, standard probability calculus can
be used to derive a combined inference. The key is
constructing a reasonable manner by which joint
probabilities can be considered. For example, given two
pairs of genes A and B, we may wish to estimate whether
they have direct molecular interactions, Analysis of a
functional genomics data set with protein—protein (P—P)
interaction information may vield some estimate of Prob(A
and B interact| positive P—P assay scores). Another
analysis of their transcriptional co—expression may yield
another probability score P(A and B interact | expression
correlation ) 0.5). The question is how to compute Prob(A
and B interact | positive P—P scores AND expression
correlation ) 0.5). This requires us to model certain joint
distributions and in a more complicated set of analyses,
postulate a dependency relationship as the full joint
distribution of all outcomes, A possible example of such
combined inference is so—called Bayesian integration
methods (Drawid and Gerstein, 2000; Troyanskaya et
al,, 2003). This method involves selecting a prior
assumption on marginal distributions (i.e., the prior
distributions) and an inter—relational structure possibly
represented as a graphical model., One problem with
this approach is that in many cases the prior structure
for the relationship of the joint events is extremely poorly
known, It is difficult to introduce reasonable assumptions
about the inter—relationships of many outcomes, For
example, it is very difficult to state with confidence the
joint probability of positive outcomes for two different
interaction assays for two genes, say from proteomics
and from expression analysis,

A possible approach here is to estimate the dependent
relationships through a training set. This would be
analogous to typical network modeling of gene regulation,
For example, we may wish to predict whether a given
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open reading frame codes for G protein—coupled
receptors (GPCR; a particular kind of protein). We may
have a training data set with known GPCRs, several
different prediction algorithms (e.g., Kim ef a/,, 2000)
with probability scores, For each input sequence, each
prediction algorithm produces a marginal probability
value of GPCR assignment, Again, the relationship
between algorithm outputs and the combined output can
be represented as a probabilistic graphical model. We
can then estimate the graph structure and conditional
probabilities that maximize the likelihood of training
dataset assignment at a special “combined output” vertex
(Friedman and Koller, 2003). Possible problems here
mirror those of standard network models, that is,
computational complexity is high and it is difficult to obtain
sufficient amounts of data,

Integrating different parametric models through a
connecting semi—parametric model criteria

Process models are often integrated into analysis
algorithms in the construction of the objective function
or distance measures, For example, a model of molecular
evolution might be incorporated into a likelihood objective
function or distance measures between two sequences,
Each objective function or distance measure with a finite
set of parameters might be seen as representing a
parametric process model, One approach to integrating
different models is by connecting the different objective
functions or distance measures into a semi—parametric
family of models, Suppose we have k different objective
functions or distance measures, 4(D, pi)..., (D, bd,
where D is the input data and P, is the ith parameter
set. A simple semi—parametric function is a weighted
linear combination L(D,a , p) = aiA(D, pr)+---+asfc (D, pa),
where a is the ith mixture coefficient. This construction
has the desirable property that we can recover the ith
marginal objective function by setting all ax=0, k¥ /

An example of combining models through
semi—parametric criteria comes from recent work in
phylogenetic methods. J. Kim and M. Sanderson
(unpublished) constructed such a semi—parametric
model for phylogeny reconstruction where the
semi—parametric function spanned the different models
from the standard maximum parsimony estimator to the
standard maximum likelihood estimator. In this case, the
maximum parsimony estimator had an objective function
of the form 7,40, o -+ p,) while the maximum likelihood
had the form {0, p=p= - p,). That is, the maximum
likelihood estimator had an identical objective function
but maximized over a subspace of possible parameter
set, This led to a semi parametric estimator of the form
LD, a ,p)=fwp(D o~ p)ta -Vadpr+p,), thus when

a =0, it led to the standard maximum parsimony model
whereas when ¢ = oo, it forced the variance term to zero
resulting in the standard maximum likelihood estimator,
This is a special case of different models where the models
differ by subspace restrictions on the parameter set,

The key to this kind of model integration by
semi—parametric objective function construction is
selecting the appropriate connecting function, While a
linear connecting function is simple, there are several
desirable properties to consider and remain as open
problems:

(1) Given some general form for the connecting function,
L(D, a, p), and a reasonable definition of function
complexity, say number of parameters, what is the
least complex function such that there are values
of « that recovers each marginal objective function?
This problem asks us to construct a connecting
function in a minimal way such that we can set the
parameters of the connecting function to recover the
properties of each input objective function, Thus, we
are guaranteed that the semi—parametric model
“contains” all the input models,

(2) For objective functions, we are typically interested
in the characteristics of the points of the parameter
set (or functions of the points) at the extrema, For
example, if the objective function is the likelihood
tunction for a phylogeny given some model of
molecular evolution, then we are interested in what
kinds of trees are output for some input dataset; that
is, what kinds of trees maximize the likelihood function.
If we were to construct a semi—parametric objective
function, then we would be interested in the trees
at the maximum of the new objective function, Suppose
now we were given some collection of objective
functions (and implied models) and a set of data.
Also, suppose we had a desired output for each input
data, say as a training set. Is there an efficient way
to construct a semi—parametric connecting objective
function such that the function has parameter values
at which the training set can be recovered? That
is, if we are given some choice of models and a
set of desired outputs for an input data set, can we
construct a family of integrated models that will recover
the outputs? This question asks whether a method
can be found to constructively generate a
semi—parametric method that might agree with some
prior biological knowledge.

(3) The semi—parametric connection function is a family
of models in which depending on some parameter
set, which we denoted as « , we can change the
behavior of the analysis making it more like one model
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versus another, In biological situations, this change
in behavior may be scale or process dependent, For
example, when comparing the expression of two
genes, at low levels of expression we might consider
their behavior similar because both are nearly “off”,
However, at higher levels of expression one might
say the genes are related if the expression levels
are correlated over different experiments, One simple
semi—parametric implementation of this scenario is
as Dx, W=a | x—y| +1=a )cos™(x, ). That is, as
a weighted combination of the Euclidean distance
between the two expression levels x and y and the
correlation between x and y (the angle). Biological
reasoning suggests that the mixture parameter a should
be related to the input values themselves. This
suggests a new class of semi—parametric objective
model families where the choice of the particular
function is selected by the input data themselves,
Similar problems might be raised with the training
data set idea discussed above. Can we construct
a semi—parametric model that chooses the
appropriate member of the family from the
characteristics of the input data? Studying this class
of semi—parametric models is likely to lead to other
problems such as whether one might be able to
construct a family that can be consistently trained,

Model Integration

In a biological context the term ‘modeling’ generally refers
to an abstraction of a biological system amenable to
analysis for understanding and eventual prediction of
the systems behavior via analytical or numerical
computation, Many of the best computational analysis
tools implicitly and explicitly incorporate models of
biological processes including biophysical, biochemical,
physiological, morphological, and evolutionary
processes. For example, stochastic models of molecular
evolution are used in likelihood—based estimation of
phylogenies and known splicing reactions are used in
gene prediction algorithms, As noted above, model
integration has very wide—ranging interpretations and
possible directions, Here we provide some example of
how biologically motivated process models might be
exploited in order to develop a richer set of models for
molecular sequence and gene expression data.

Biological Criteria for Data Encapsulation

In our discussion of data integration we discussed the
need to characterize and encapsulate data in such a
way as to make it “context independent” and
“comparable,” The suitability of different encapsulation

schemes often depends on the questions being asked,
however a number of biological criteria are commonly
invoked to establish comparability. For example, referring
to portions of a proteins as a “domains” is one type of
encapsulation motivated by an underlying biological
hypothesis of similarity with respect to structure and
function, Another primary biological model for establishing
comparable and context independent units of
characterization is that of homology. The concept of
homology invokes ‘a notion of “sameness” and continuity
of descent (i.e. traits in different organisms that
correspond to a single trait in a common ancestor; Wagner,
2001; Wagner and Stadier, 2003). period Hand in hand
with homology statements is the notion that biological
systems can be decomposed into sets of
quasi—independent elements, That is, we recognize units
of homology by the fact that such units exhibit a certain
degree of independence through development or
evolution, Hypotheses of homology and decomposability
are widely used in genomics, either implicitly or explicitly.
For example, the BLAST algorithm can be seen as
generating a set of ranked hypotheses about sequence
homology, In fact, statements of homology are often an
absolute requirement for comparative genomic analyses,

A particularly pressing challenge if we are to achieve
an integrative genomics that scales from sequences to
phenotypes is to come up with useful working definitions
of homology that can be applied at levels of organization
above the sequence level. For example, a way of defining
homology at the level of genetic subnetworks would
greatly facilitate comparative functional genomic analyses
across disparate genomes by focusing attention on
similarities and dissimilarities among groups
(subnetworks) of genes rather than individual genes.
Similarly, a suitable decomposition in terms of
subnetworks would be useful at the level of analysis
integration. For example, given data on gene expression
and protein—protein interaction we might ask whether
these two types of data are telling us the same thing,
not on a gene—by—gene basis, but rather at the level
of sets of interacting genes (i.e. the details might be
different, but the story is essentially the same). Similar
challenges remain for defining homology for complex
phenotypes (e.g. behavior),

Model Derived Constraints

Above we discussed some of the challenges we face
when trying to integrate value schemes from different
types of analyses, How, for example, might we caiculate
joint probabilities for outcomes at two distinct levels of
biological organization or operating under distinct
evolutionary models? As a concrete example, suppose



we have an algorithm for producing the likely starting
positions of a particular gene (annotated with value
schemes) and another algorithm for producing the likely
locations of regulatory elements for that gene similarly
annotated, We would like to combine the information
produced by these algorithms in order to come up with
a combined representation of the genome in terms of
gene—promoter pairs, One approach is to view the outputs
of the two algorithms as random variables X and Y
respectively, The value schemes associated with the
algorithms give us “prior” distributions for X and Y. How
might we derive the posterior distribution of interest?

We suggest that one way to facilitate such integration
is to encode empirically or computationally derived
biological knowledge as models that specify constraints
or probabilities on the possible outcomes at a different
level, For example, detailed studies of genes and
promoters across might lead us to the conclusion that,
generally speaking, “Regulatory elements occur within
5K base pairs of exons.” This imposes a constraint on
the joint distribution of X and Y. The posterior distributions
of X and Y are the marginal distributions of this constrained
joint distribution, To generalize, we expect the biological
constraints governing the relationship between two
random variables to take the form of constraints, The
constraints might be (1) structural constraints which are
based on the geometry of the object being found by
the algorithm; (2) relational constraints in which certain
set of measurements have functional relationships; and
(3) abundance constraints which are constraints on how
many or how few a number of some feature must occur
around a particular locus. A challenge is to develop
general algorithmic techniques for computing (modes
of) posterior distributions under any of these types of
constraints, A constraint oriented view of joint priors can
lead to new algorithmic approaches, For example, joint
distributions can be described more succinctly from a
geometrical point of view (e.g., Allman and Rhodes, 2003;
Geiger ef a/,, 2002; Kim, 2000).

Extended models of molecular evolution

Many sequence models such as HMM and generative
grammar models are described in terms of “sequence
production”, but in reality sequences are not generated
or produced in the manner described by these models,
For example, HMMs describe sequence generation as
a left to right production of nucleotide symbols, but this
is not how the original sequences are produced by
biology. In fact, the sequences have a biological
generative process, namely genealogical inheritance and
evolutionary change. Models of molecular evolution
provide fundamental principles for inferring biological
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processes from static data (e.g., inference of phylogenetic
trees representing genealogical relationship) and help
to assess probabilistic significance of inferred patterns
{(e.g., probability of sequence identity between two
homologous molecules). As the types of genomic data
grow, there is a need to develop new models and extend
currents models for new types of data and more
complicated modes of evolution, Here we discuss three
examples, evolutionary dynamics of short oligo tags,
non—coding sequences, and gene expression,

Evolutonary dynamics of short oligomers

High—throughput technologies often use small
subsequences, oligomers { 100 bases, as surrogate
markers for larger sequences. Even under standard
models of evolution for larger sequences, e.g. Poisson
mutation process, the dynamics of sequence tags are
not well understood. The solution to this problem will
impact many techniques such as arrays that depend
on the detection of short sequence motifs, As a first step
problem, suppose we have a collection of sequences
related to each other by a tree graph. This tree graph
may represent genealogies of whole genomes or the
genealogy of gene duplications within a genome,
Assuming a constant rate Poisson mutation process, we
wish to know the dynamics of the presence/absence
of sequences tags of particular length k. We have studied
this problem for tags of sufficient length and fixed size
such that the probability of non—homologous presence
is low; under this simple scenario the probability of
presence of a tag of length & at some node in the tree
is a geometric distribution with parameters dependent
on the relative time—length of the left and right subtrees
pending from the node. However, for even this simple
problem, the solution is unknown for the ensemble of
tag lengths because the different tags and tags at different
length are dependent on each other,

Evolutionary dynamics of non—coding sequences

Functional non—coding sequences include promoters,
enhancers, chromatin structural elements, small RNA
elements, as well as introns and UTRs (e.g. Hall ef a/,
2002; Chi et al,, 2003; Herbert, 2004). These kinds of
elements are subject to different kinds of evolutionary
forces, such as frequent insertions and deletions,
sequence conversion, and transpositions (Carter and
Wagner, 2002; Lynch, 2002; Hahn et a/., 2003). For
example, Kim (2001) has studied the evolutionary
dynamics of intervening sequences in between
conserved sequences in the regulatory region of the
Drosophila gene hairy and found evidence for neutral
random change in sequence length, Functional annotation
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of these kinds of elements has been the focus of new research
efforts (ENCODE; http://www.genome.gov/ENCODE), In
particular, it would be desirable to use models of
evolutionary dynamics for both algorithm development
and for significance calculations, Currently, most of the
algorithms and probability calculations are based on point
mutations or small—order linear dependency models,

The primary work required for these studies is a
systematic study of the empirical evidence, Compilations
of the positional distribution of the non—coding
sequences, such as frequency distribution of the length
of conserved sequences, frequency distribution of
intervening sequences, and their relation to the coding
sequences is only beginning to be available (e.g., Stein
et al, 2003; Kent ef al, 2003; Cooper ef al, 2003, Hampson
et al, 2002, Jareborg et al,, 1999), Comparative genomics
approaches have been useful in this context and have
lead to methods for functional prediction (e.g., Levy ef
al,, 2001; Rivas et al., 2001; Wasserman et al,, 2000),
The observed empirical distributions can be used to derive
heuristic significance values for predicted non—coding
sequences. Statistical compilations can give heuristic
assessment of significance of a given putative functionally
important non—coding sequence. But, for more principled
inference, an evolutionary process model will need to
be developed building on the recent works studying the
evolution of non—coding sequences (e.g., Kim, 2001;
Rogozin et al,, 2002; Ohta, 1997).

Evolutionary dynamics of gene expression

Recent studies (Rifkin ef a/,, 2003) indicate that the
expression level of individual genes follow an evolutionary
dynamics similar to many continuous quantitative traits
(e.g., body size, bristle numbers). Traditionally,
quantitative trait evolution is modeled using a variety of
diffusion processes (reviewed in Hansen, 1997). For
example, a quantitative trait under stabilizing selection
can been modeled using the Orstein—Uhlenbeck process
(diffusion under a centralizing force—field; Hansen, 1997;
Hansen and Martins, 1996), These kinds of models can
be used to predict the expected dispersion of gene
expression levels across different lineages of organisms
which in turn can be used to predict the functional
significance of expression level akin to the kinds of
inferences made in sequence analysis, There are several
open problems here: (1) methods to measure fundamental
parameters of the process from data; (2) incorporation
of pleiotropic and epistatic regulatory connections
between different genes; and (3) extension to different
kinds of continuous stochastic processes,

One of the fundamental parameters in such a model
is the gene specific rate of mutational change per unit

time (in the expression level). A complicating factor is
that different genes have different degrees of epistatic
input from other genes that affect its expression. A gene
with a large number of other genes affecting its expression
is also expected to show a high mutation rate because
the change in any of the other genes will affect its
expression. One possible approach is to estimate a
characteristic degree of regulatory connectivity for a
particular organism and model ensemble behavior,
Finally, many varieties of diffusion processes predict a
normal distribution for the trait value. Typical gene
expression data sets, studied under artificial mutagenesis,
show a distribution similar to a normal distribution but
with a large tail indicating a mixture model of small effects
(normal) and large effects (long tail) (e.g., Hughes, 2000;
Rifkin ef a/, 2000). Such mixiure models can be studied
by pooling the various studies and using, for example,
Bayesian estimation procedures to separate the
distributions. For modeling quantitative evolutionary
dynamics, an important determinant is the genetic
component of the linear variance—covariance structure
of the traits (cf., Lande, 1979; Lande and Arnold, 1983).
This is because, similar to the gradient matrix of a
continuous dynamical system, the linear genetic
variance—covariance matrix determines the short—term
direction and magnitude of change. The main
complication in the gene expression case is extreme high
dimensionality and possibly complicated high~order joint
distributional structure, However, from many empirical
observations, it is clear that the dynamics of gene
expression, whether in a developmental sense or with
respect to genetic variants, do not fully span the possible
dimensions, in fact all evidence suggests far less (e.g.,
Ritkin ef ai,, 2000), Thus, one possible approach is to
reduce dimensionality by estimating the “biologically
relevant”, i.e., noise—free, dimensions of the gene
expression space and then computing the
variance—covariance structure with respect to some
reasonable basis vector of the reduced dimensions.

Conclusions

In the introduction to this review we noted that many
genomic approaches share at least one major feature
— high throughput systematic coliection of data without
explicit predefined hypotheses. While such efforts have
been critiqued as being “fishing expeditions” there is
a real strength in leveraging large—scale data both for
specific problems as well as for new problems. In
particular, as our knowledge of the organism becomes
more complete and complex, we expect that the nature
of the guestions we pose will change. Already, in the
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field of gene regulation we have moved from the concept
of “master regulatory genes” to gene regulatory cascades,
Numerous analyses of functional genomic data suggest
that co—regulatory dynamics tend to be both complex
and context dependent, Thus the question of interest
may not be whether any given gene interacts with any
other gene (the answer may be both “yes” and “no”
depending on context), but rather “what is the overall
architecture of genetic regulatory interactions which
drives the dynamics of the system?”

Our science moves beyond the descriptive, to the
“‘integrative”, when we begin to use genomic data to
test or derive specific biological hypotheses, We are at
a point where we can begin to undertake such model
driven approaches to genomics. However, it is our view
that to do so effectively the field will have to address
many of the issues raised in the previous pages. Most
critical amongst these challenges is developing a unified
theoretical foundation for biological data analysis and
knowledge representation, In the end, all our scientific
knowledge is model based or theory based, Even the
proper interpretation of the movement of a nucleotide
sequence on an agarose gel requires a model theoretic
understanding of statistical mechanics, The main
difference between such measurements and genome
scale measurements is that we already have a
well—defined model understanding of the movements of
charged molecules in an electrical field, The future waits
for a similar model theoretic view of the whole genome
and the organism,
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