두경부 방사선 치료 환자에서 투과선량 알고리즘의 임상 적용시 불균질 조직 보정에 관한 연구

Tissue Inhomogeneity Correction in Clinical Application of Transmission Dosimetry to Head and Neck Cancer Radiation Treatment

  • 김수지 (서울대학교 의과대학 치료방사선과학교실) ;
  • 하성환 (서울대학교 의과대학 치료방사선과학교실) ;
  • 우홍균 (서울대학교 의과대학 치료방사선과학교실) ;
  • 허순녕 (서울대학교 의과대학 치료방사선과학교실)
  • Kim Suzy (Department of Radiation Oncology, Seoul National University College of Medicine) ;
  • Ha Sung Whan (Department of Radiation Oncology, Seoul National University College of Medicine) ;
  • Wu Hong Gyun (Department of Radiation Oncology, Seoul National University College of Medicine) ;
  • Huh Soon Nyung (Department of Radiation Oncology, Seoul National University College of Medicine)
  • 발행 : 2004.06.01

초록

목적 : 두경부에 방사선 치료를 받는 환자에서 투과선량측정시스템을 적용하여 시스템의 재현성과 선량 계산 알고리즘의 정확도를 확인하기 위하여 본 연구를 시행하였다. 대상 및방법 : 2001년 9월 5일부터 9월 18일까지 괴 MV선형가속기를 이용하여 두경부에 방사선치료를 시행한 환자를 대상으로 하였으며, 3회 이상의 측정을 시행하고 조사야의 중심이 차폐되지 않은 35명의 환자를 대상으로 분석을 시행하였다. 매일 환자의 치료 시작 전과 치료 중 한 시간 간격으로 10$\times$10 cm$^{2}$개방 조사야에 100 MU을 조사하고 측정을 시행하여 시스템의 안정성 및 재현성을 확인하였다. 투과선량 계산 알고리즘의 정확도를 평가하기 위하여 두경부 방사선치료 환자에서 투과선량의 예상치를 구하고 측정치와 비교하였다. 투과선량 예상치는 환자의 CT 또는 MR 영상과 모의치료 시의 X-선 필름을 사용하여 방사선 투과 부위의 골조직, 공기, 지방조직의 두께를 측정하고 이에 대한 불균질 조직의 영향을 보정하였다. 결과 : 10$\times$10 cm$^{2}$개방 조사야에 100 MU을 조사하여 측정을 시행하였을 때 측정치의 일 중의 오차가 $\pm$0.5$\%$ 이내이고 일간의 오차가 $\pm$1.0$\%$ 이내로 시스템의 안정성 및 재현성을 확인할 수 있었다. 투과선량 예상치와 실제 측정치 간의 평균 오차는 뇌 부위 치료 환자에서는 $\pm$5$\%$ 이하, 두부 치료 환자에서는 $\pm$2.5$\%$ 이하, 경부 치료 환자에서는 $\pm$5$\%$ 이하이었다. 결론 : 투과선량측정시스템의 안정성과 재현성을 확인할 수 있었고, 외부 형태가 불규칙하고 불균질 조직이 포함되는 부위에 대하여 CT, MR 등의 영상을 이용하여 불균질 조직에 대한 보정을 함으로써 정확한 예상치를 구할 수 있음을 확인하였다.

Purpose : To confirm the reproducibility of in vivo transmission dosimetry system and the accuracy of the a1gorithms for the estimation of transmission dose in head and neck radiation therapy patients. Materials and Methods : From September 5 to 18, 2001, transmission dose measurements were peformed when radiotherapy was given to brain or head and neck cancer patients. The data of 35 patients who were treated more than three times and whose central axis of the beam was not blocked were analyzed in this study. To confirm the reproducibility of this system, transmission dose was measured before dally treatment and then repetitively every hour during the treatment time, with a field size of 10$\times$10 cm$^{2}$ and a delivery of 100 MU. The accuracy of the transmission dose calculation algorithms was confirmed by comparing estimated dose with measured dose. To accurately estimate transmission dose, tissue inhomogeneity correction was done. Results : The measurement variations during a day were within $\pm$0.5$\%$ and the dally variations in the checked period were within $\pm$ 1.0$\%$, which were acceptable for system reproducibility. The mean errors between estimated and measured doses were within $\pm$5.0$\%$ in Patients treated to the brain, $\pm$2.5$\%$ in head, and $\pm$ 5.0%$\%$in neck. Conclusion : The results of this study confirmed the reproducibility of our system and its usefulness and accuracy for dally treatment. We also found that tissue inhomogeneity correction was necessary for the accurate estimation of transmission dose in patients treated to the head and neck.

키워드

참고문헌

  1. Wu HG, Ha SW. Development of algorithm for on-line dosimetry system for high energy radiation treatment. J Korean Asso Radiat Prot 1997;22:207-218
  2. Wu HG, Shin KC, Ha SW, Huh SN, Lee HK. Inhomogeneity correction in on-line dosimetry using transmission dose. J Korean Asso Radiat Prot 1998;23:139-147
  3. Yun HG, Chie EK, Huh SN, Lee HK, Wu HG, Shin KC, Ha SW. Transmission dose estimation algorithm for tissue deficit. J Korean Soc Ther Radiol Oncol 2002;20:186-192
  4. Yun HG, Chie EK, Huh SN, Wu HG, Lee HK, Shin KC, Kim SY, Ha SW. Transmission dose estimation algorithm for irregularly shaped radiation field. J Korean Soc Ther Radiol Oncol 2002;20:274-282
  5. Kim BK, Chie EK, Huh SN, Lee HK, Ha SW. Clinical application of in vivo dosimetry system in radiotherapy of pelvis. J Korean Asso Radiat Prot 2002;27:37-49
  6. Kahn FM. The Physics of Radiation Therapy, 2nd edition. Baltimore, Williams & Wilkins 1994:84-86
  7. Urie MM, Goiten M, Loppke K, et al. The role of uncertainty analysis in treatment planning. Int J Radiat Oncol Biol Phy 1991;21:91-107
  8. Calandrino R, Cattaneo GM, Fiorino C, Longobardi B, Mangili P, Signorotto P. Detection of systematic errors in radiotherapy before treatment delivery. Radiother Oncol 1997;45:271-274 https://doi.org/10.1016/S0167-8140(97)00095-9
  9. Noel A, Aletti P, Bey P, Malissard L. Detection of error in individual patients in radiotherapy by systematic in vivo dosimetry. Radiother Oncol 1995;34:144-151 https://doi.org/10.1016/0167-8140(94)01503-U
  10. Essers M, Lanson JH, Mijnheer B. In vivo dosimetry during conformal therapy of prostate cancer. Radiother Oncol 1993;29:271-279 https://doi.org/10.1016/0167-8140(93)90258-A
  11. Heukelom S, Lanson JH, Mijnheer B. In vivo dosimetry during pelvic treatment. Radiother Oncol 1992;25:111-120 https://doi.org/10.1016/0167-8140(92)90017-O
  12. McNutt TR, Mackie TR, Reckwert P, Papanikolaou N, Paliwal BR. Calculation of portal dose using the convolution$^{}$erposition method. Med Phys 1996;23:527-535 https://doi.org/10.1118/1.597810
  13. McNutt TR, Mackie TR, Reckwerdt P, Paliwal BR. Modeling dose distributions from portal dose images using the convolution$^{}$erposition method. Med Phys 1996; 23:1381-1392 https://doi.org/10.1118/1.597872
  14. Boellaard R, van Herk M, Mijnheer B. The dose response relationship of a liquid-filled electronic portal imaging device. Med Phys 1996;23:1601-1611 https://doi.org/10.1118/1.597828
  15. Boellaard R, Herk M, Mijnheer B. A convolution model to convert transmission dose images to exit dose distributions. Med Phys 1997;24:189-199 https://doi.org/10.1118/1.598066
  16. Boellaard R, Essers M, van Herk M, Mijnheer B. New method to obtain the midplane dose using portal in vivo dosimetry. Int J Radiat Oncol Biol Phys 1998;41:465-474 https://doi.org/10.1016/S0360-3016(98)00048-0
  17. Boellaard R, van Herk M, Uiterwaal H, Mijnheer B. Firstclinical tests using a liquid-filled electronic portal image device and convolution model for the verification of the midplane dose. Radiother Oncol 1998;47:303-312 https://doi.org/10.1016/S0167-8140(98)00008-5
  18. Boellaard R, van Herk M, Uiterwaal H, Mijnheer B. Two-dimensional exit dosimetry using a liquid-filled electron portal image device and convolution model. Radiother Oncol 1997;44:149-157 https://doi.org/10.1016/S0167-8140(97)00073-X
  19. Pasma KL, Kroonwijk M, de Boer JC, Visser AG, Heijmen BJ. Accurate portal dose measurement with a fluoroscopic electronic portal image device (EPID) for open and wedged beams and dynamic multileaf collimation. Phys Med Biol 1998;43:2047-2060 https://doi.org/10.1088/0031-9155/43/8/004
  20. Michalski JM, Wong JW, Gerber RL, et al. The use of on-line image verification to estimate the variation in radiation therapy dose delivery. Int J Radiat Oncol Biol Phys 1993; 27:707-716 https://doi.org/10.1016/0360-3016(93)90400-P
  21. Essers M, Boellaard R, van Herk M, Lanson H, Mijnheer B. Transmission dosimetry with a liquid-filled electronic portal imaging device. Int J Radiat Oncol Biol Phys 1996;34:931-941 https://doi.org/10.1016/0360-3016(95)02191-4
  22. Antolak JA, Cundiff JH, Ha CS. Utilization of thermoluminescent dosimetry in total skin electron beam radiotherapy of mycosis fungoides. Int J Radiat Oncol Biol Phys 1998;40:101-108 https://doi.org/10.1016/S0360-3016(97)00585-3
  23. Loncol T, Greffe JL, Vynckier S, Scalliet P. Entrance and exit dose measurements with semiconductors and thermoluminescent on-line image verification to estimate the variation in radiation therapy dose delivery. Int J Radiat Oncol Biol Phys 1993;27:707-716 https://doi.org/10.1016/0360-3016(93)90400-P
  24. Voordeckers M, Goossens H, Rutten J, Van den Bogaert W. The implementation of in vivo dosimetry in a small radiotherapy department. Radiother Oncol 1998;47:45-48 https://doi.org/10.1016/S0167-8140(97)00177-1
  25. Van Tienhoven G, Mijnheer B, Bartelink H, Gonzalez DG. Quality assurance of the EORTC Trial 22881/10882: boost versus no boost in breast conserving therapy. An overview. Strahlenther Onkol 1997;173:201-207 https://doi.org/10.1007/BF03039289
  26. Cozzi L, Fogliata-Cozzi A. Quality assurance in radiation oncology. A study of feasibility and impact on action levels of an in vivo dosimetry program during breast cancer irradiation. Radiother Oncol 1998;47:29-36 https://doi.org/10.1016/S0167-8140(97)00202-8