Abstract
Association measures are applied to various applications, including information retrieval and data mining. Each association measure is subject to a close examination to its tendency to prefer high or low frequency level because it has a significant impact on the performance of applications. This paper examines the frequency level preference(FLP) tendency of some popular association measures using artificially generated cooccurrence data, and evaluates the results. After that, a method of how to adjust the FLP tendency of major association measures such as cosine coefficient is proposed. This method is tested on the cooccurrence-based query expansion in information retrieval and the result can be regarded as promising the usefulness of the method. Based on these results of analysis and experiment, implications for related disciplines are identified.
연관성 척도는 정보검색 및 데이터마이닝을 비롯한 다양한 분야에서 사용되고 있다. 각 연관성 척도가 높거나 낮은 빈도 중에서 어떤 쪽을 선호하는가를 나타내는 빈도수준 선호경향은 척도의 적용 결과에 중요한 영향을 미치므로 이에 대한 면밀한 조사가 필요하다. 이 연구에서는 주요 연관성 척도들의 빈도수준 선호경향을 가상의 데이터를 통해 분석하고 그 결과를 제시하였다. 또한 코사인 계수를 비롯한 대표적인 연관성 척도에 대해서 빈도수준 선호경향을 조절할 수 있는 방법을 제안하였다. 이 조절 방법을 동시출현 기반 질의확장 정보검색에 적용해본 결과 그 유용성이 확인되었다. 마지막으로 분석 및 실험 결과가 관련 분야에 시사하는 바를 논하였다.