DOI QR코드

DOI QR Code

Phytotoxicity of Endophytic Fungi and Characterization of a Phytotoxin Isolated from Gliocladium catenulatum from Pinus densiflora

식물내생곰팡이의 제초활성 검정 및 소나무에서 분리한 Gliocladium catenulatum이 생산하는 제초활성 물질의 특성 규명

  • Choi, Gyung-Ja (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Park, Joong-Hyeop (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Kim, Heung-Tae (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Lee, Seon-Woo (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Choi, Jung-Sup (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Hong, Kyung-Sik (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Cho, Kwang-Yun (Biological Function Research Team, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Cheol (Biological Function Research Team, Korea Research Institute of Chemical Technology)
  • 최경자 (한국화학연구원 생물화학연구부 생물기능연구팀) ;
  • 박중협 (한국화학연구원 생물화학연구부 생물기능연구팀) ;
  • 김흥태 (한국화학연구원 생물화학연구부 생물기능연구팀) ;
  • 이선우 (한국화학연구원 생물화학연구부 생물기능연구팀) ;
  • 최정섭 (한국화학연구원 생물화학연구부 생물기능연구팀) ;
  • 홍경식 (한국화학연구원 생물화학연구부 생물기능연구팀) ;
  • 조광연 (한국화학연구원 생물화학연구부 생물기능연구팀) ;
  • 김진철 (한국화학연구원 생물화학연구부 생물기능연구팀)
  • Published : 2004.06.30

Abstract

This study was conducted to discover new phytotoxins which may be used as lead molecules for the development of new herbicides. A total of 187 endophytic fungi were isolated from 11 plant species, which were collected from 8 locations in Korea. Their herbicidal activities were screened in vivo by herbicidal and duckweed bioassays after they were cultured in potato dextrose broth and rice solid media. Both fermentation broth and solid culture extract of Gliocladium catenulatum F0006 isolated from red pine (Pinus densiflora) showed 70% herbicidal activity only against cocklebur (Xanthium strumarium) out of the 10 weeds tested. Solid culture extract of F0034 isolated from arrowroot (Pueraria thunbergiana) exhibited 20 to 100% herbicidal activities against all of the weeds. Especially, shattercane (Sorghum bicolor), barnyardgrass (Echinochloa crus-galli), large crabgrass (Digitaria sanguinalis), and fall pauicum (Panicum dichtomiflorum) were sensitive to the solid culture extract of F0034. In addition, solid culture extract of F0043 isolated from red pine displayed 20% to 70% herbicidal activities only against 5 grass species, but not against 5 broad-leaf plant species. On the other hand, as the results of duckweed assay, 8 fermentation broths showed 100% growth inhibitory activity at concentrations less than 5.0% of culture supernatants and 12 solid cultures had a potent inhibitory activity against duckweed growth. A toxic metabolite was purified from the solid cultures of G. catenulatum F0006 by repeated column chromatography and bioassay. It caused a phytotoxic syndrome only on cocklebur out of the 10 weeds tested; it completely killed cocklebur seedlings at $500\;{\mu}g/ml$ and showed 85% herbicidal activity against cocklebur at $100\;{\mu}g/ml$. The molecular weight of the toxic metabolite is 238 daltons and its structure determination is underway.

새로운 제초제 개발을 위한 선도물질을 발견하고자 본 연구를 실시하였다. 국내에 8개 지역으로부터 채취한 11개 자생식물로부터 총 187개의 식물내생곰팡이를 분리한 후 감자즙액배지와 쌀고체배지에 배양한 다음, 밭잡초와 좀개구리밥에 대한 제초활성을 조사하였다. 그 결과, 소나무에서 분리한 Gliocladium catenulatum F0006 균주의 액체배지와 고체배지 추출물이 실험에 사용한 10개의 밭잡초 중에서 도꼬마리에 대해서만 선택적으로 70%의 제초활성을 보였다. 칡에서 분리한 F0034 균주의 고체배지 추출물은 10가지 밭잡초 모두에 20%에서 100%까지의 제초활성을 보였는데, 특히 수수, 돌피, 왕바랭이 및 미국 개기장 등이 민감하게 반응하였다. 그리고 소나무에서 분리한 F0043 균주의 고체배지 추출물은 5가지 화본과 식물에 대해서만 20%에서 70%까지의 제초활성을 보였다. 한편, 좀개주리밥에 대한 실험 결과, 액체배지는 8개 균주가 배지농도 5% 이하의 농도에서, 고체배지 추출물에서는 12개 균주가 좀개리밥의 생장을 100% 억제하는 높은 활성을 보였다. G. catenulatum F0006 균주의 고체배양체로부터 반복적인 컬럼과정과 생물검정을 통하여 한 개의 제초활성 물질을 분리하였다. 이 물질은 도꼬마리에 대해서만 특이적으로 제초활성을 보였는데, $500\;{\mu}g/ml$에서는 완전히 치사시켰고, $100\;{\mu}g/ml$에서는 도꼬마리 생장을 85% 억제하였다. 분리한 물질의 분자량은 238 daltons 이었다.

Keywords

References

  1. 한국농약과학회지 v.4 no.3 토양 및 식물체로부터 분리한 Fusarium속 균주들의 생물활성 박중협;김진철;최경자;김흥태;홍경식;송철;김진석;김정규;조광연
  2. Science v.204 Identifying environmental chemicals causing mutations and cancer Ames, B.N. https://doi.org/10.1126/science.373122
  3. Phytopathology v.73 Inhibitory effect of Bacillus subtilis on Uromyces phaseoli and on development of rust pustules on bean leaves Baker, C.J.;Stavely, C.A.;Thomas, M.;Sasser, M.;Mac-Fall, J.S. https://doi.org/10.1094/Phyto-73-1148
  4. Control of powdery mildews without chemicals: prophylactic and biological alternatives for horticultural crops;The Powdery Mildews: A Comprehensive Treatise Belanger, R.R.;Labbe, C.;Belanger, R.R.(ed.);Bushnell, W.R.(ed.);Dik, A.J.(ed.);Carver, T.L.W.(ed.)
  5. J. Antibiot. v.48 Inhibition of cfos proto-oncogene induction by Sch 52900 and Sch 52901, novel diketopiperazine produced by Gliocladium sp Chu, M.;Truumees, I.;Rothofsky, M.L.;Patel, M.G.;Gentile, F.;Das, P.R.;Puar, M.S.;Lin, S.L. https://doi.org/10.7164/antibiotics.48.1440
  6. Pest Manag. Sci. v.56 Biopesticides: a review of their action, applications and efficacy Copping, L.G.;Menn, J.J. https://doi.org/10.1002/1526-4998(200008)56:8<651::AID-PS201>3.0.CO;2-U
  7. Phytopath. Z. v.63 Die bedeutung vorfruchtabhaengiger verschiebungen in der bodenmikroflora. 1. Der einfluss von bodenpilzen auf die wurzelentwicklung von weizen, erbsen und raps Domsch, K.H.;Gams, W. https://doi.org/10.1111/j.1439-0434.1968.tb02371.x
  8. Gliocladium conta 1840;Compendium of soil fungi Domsch, K.H.;Gams, W.;Anderson, T.H.
  9. Important weeds of the world (Scientific and Common Names and WSSA/WSSJ Approved Computer Codes) Faust, W.
  10. Chem. Pharm. Bull. v.43 Studies on metabolites of mycoparasitic fungi. II. Metabolites of Trichoderma koningii Huang, Q.;Tezuka, Y.;Kikuchi, T.;Nishi, A.;Tubaki, K.;Tanaka, K. https://doi.org/10.1248/cpb.43.223
  11. Phytoparasitica v.30 Transforming natural products into natural pesticides-experience and expectations Istvan, U. https://doi.org/10.1007/BF02979747
  12. J. Antibiot. v.33 A new sesquiterpene antibiotic, heptelidic acid producing organisms, fermentation, isolation and characterization Itoh, Y.;Kodama, K.;Furuya, K.;Takahashi, S.;Haneguchi, Y.;Arai, M. https://doi.org/10.7164/antibiotics.33.468
  13. J. Nat. Prod. v.62 Novel verticillin and glisoprenin analogues from Gliocladium catenulatum, a mycoparasite of Aspergillus flavus sclerotia Joshi, B.K.;Gloer, J.B.;Wicklow, D.T. https://doi.org/10.1021/np980530x
  14. Bacteriol. Rev. v.41 The peptide antibiotics of Bacillus: chemistry, biogenesis and possible functions Katz, E.;Demain, A.
  15. Plant Pathol. J. v.15 Antibiotic and phytotoxic activities of ophiobolins from Helminthosprium species Kim, H.J.;Kim, J.C.;Kim, B.S.;Kim, H.K.;Cho, K.Y.
  16. Pest Manag. Sci. v.57 Activity against plant pathogenic fungi of phomalactone isolated from Nigrospora sphaerica Kim, J.C.;Choi, G.J.;Park, J.H.;Kim, H.T.;Cho, K.Y. https://doi.org/10.1002/ps.318
  17. Pest Manag. Sci. v.59 A review of fungal antagonists of powdery mildews and their potential as biocontrol agents Kiss, L. https://doi.org/10.1002/ps.689
  18. Tetrahedron v.55 Isolation and structure determination of TMC-151s: novel polyketide antibiotics from Gliocladium catenulatum Gilman & Abbott TC 1280 Kohno, J.;Nishio, M.;Sakurai, M.;Kawano, K.;Hiramatsu, H.;Kameda, N.;Nishi, N.;Yanashita, T.;Okuda, T.;Komatsubara, S. https://doi.org/10.1016/S0040-4020(99)00408-1
  19. Pestic. Sci. v.39 Microbial fungicides-the natural choice Lange, L.;Breinholt, J.;Rasmussen, F.W.;Nielson, R.I. https://doi.org/10.1002/ps.2780390209
  20. J. Org. Chem. v.60 Subglutinol A and B: immunosuppressive compounds from the endophytic fungus Fusarium subglutinans Lee, J.C.;Lobkovsky, E.;Pliam, N.B.;Stroble, G.A.;Clardy, J. https://doi.org/10.1021/jo00127a001
  21. J. Antibiot. v.45 Glisoprenins, new inhibitors of acyl-CoA: cholesterol acyltransferase produced by Gliocladium sp. FO-1513. II. structure elucidation of glisoprenins A and B Nishida, H.;Huang, X.H.;Nishida, H.;Masuma, R.;Kim, Y.K.;Omura, S. https://doi.org/10.7164/antibiotics.45.1202
  22. Mycobiology v.31 Screening for antifungal endophytic fungi against six plant pathogenic fungi Park, J.H.;Park, J.H.;Choi, G.J.;Lee, S.W.;Jang, K.S.;Choi, Y.H.;Cho, K.Y.;Kim, J.C. https://doi.org/10.4489/MYCO.2003.31.3.179
  23. Pestic. Sci. v.39 Diversit of microbial products-discovery and application Porter, N.;Fox, F.M. https://doi.org/10.1002/ps.2780390210
  24. Pestic. Sci. v.37 Technical and commercial aspects of biocontrol products Powel, K.A.;Justsum, A.R. https://doi.org/10.1002/ps.2780370403
  25. Latent infection vs. endophytic colonization by fungi.;Endophytic Fungi in Grasses and Woody Plants-Systematics, Ecology, and Evolution Sinclair, J.B.;Cerkauskas, R.F.;Redlin, S.C.(ed.);Carris, L.M.(ed.)
  26. Plant Dis. v.68 Fungicide resistance: a continuing challenge Staub, T.;Sozzi, D. https://doi.org/10.1094/PD-69-1026
  27. Science v.260 Taxol and taxane production by Taxomyces andreanae, an endophytic fungi of Pacific yew Stierle, A.;Strobel, G.A.;Stierle, D. https://doi.org/10.1126/science.8097061
  28. Chem. Biol. v.4 Glucosylation of the peptide leucinostatin A, produced by an endophytic fungus of European yew, may protect the host from leucinostatin toxieity Stroble, G.A.;Hess, W.M. https://doi.org/10.1016/S1074-5521(97)90325-2
  29. J. Antibiot. v.45 Glisoprenins, new inhibitors of acyl-CoA: cholesterol acyltransferase produced by Gliocladium sp. FO-1513. I. Production, isolation and physico-chemical and biological properties Tomoda, H.;Huang, X.H.;Nishida, H.;Masuma, R.;Kim, Y.K.;Omura, S. https://doi.org/10.7164/antibiotics.45.1202
  30. FEMS Microbiol. Lett. v.193 Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei Wang, J.;Li, G.;Zheng, H.;Huang, Y.;Su, W. https://doi.org/10.1111/j.1574-6968.2000.tb09432.x
  31. J. Antibiot. v.46 Anthrotainin, an inhibitor of substance P binding produced by Gliocladium catenulatum Wong, S.M.;Kullnig, R.;Dedinas, J.;Appell, K.C.;Kydd, G.C.;Gillum, A.M.;Cooper, R. https://doi.org/10.7164/antibiotics.46.214