Physicochemical Properties of Buckwheat Starches from Different Areas

산지가 다른 메밀전분의 이화학적 특성

  • 김진기 ((주)풀무원 식문화연구원) ;
  • 김성곤 (단국대학교 식품영양학과)
  • Published : 2004.08.31

Abstract

Physicochemical properties of crystalline-structured buckwheat starches cultivated and harvested in Taiwan, China, Korea, and USA were compared. X-ray diffraction pattern showed that all starches were type A as are most natural starches. Moisture contents of starches were 6.30-9.58%, and crude protein contents of Taiwanese and Chinese buckwheats were higher than those of Korean and American ones, whereas Korean and Chinese buckwheats had higher fat contents. Blue-value of Chinese buckwheat was highest at 0.39 and that of Korean buckwheat was lowest at 0.32. Amylose content of American buckwheat was highest at 27.6 and that of Korean buckwheat was lowest. Highest water-binding capacity was shown in Taiwanese buckwheat and lowest in American one. Higher amylase contents in Chinese and American buckwheats reduced expansion and solubility. Highest values of viscosity measured by RVA, breakdown indicating process stability, and setback closely connected to retrogradation of American buckwheat resulted in relatively hard gel.

산지가 다른 지역(대만, 중국, 한국, 미국)에서 자란 4종의 메밀전분의 이화학적 특성을 살펴보았다. 그 결과를 살펴보면 전분의 외형은 4종 모두 다각형의 입자로 넓게 분포되어 있으며, X-ray 관찰결과 대다수의 천연 전분과 마찬가지로 4종 모두 A형에 속해 있었다. 수분함량은 6.3-9.58%사이에 있었으며, 조 단백은 대만산과 중국산이 한국산과 미국산시료보다 높게 나타났으며, 지방함량은 한국산과 중국산이 다른 2종의 시료보다 높게 나타냈다. 청가(BV)를 살펴보면 중국산이 0.39로 가장 높게 나타났고, 한국산이 0.32로 가장 낮게 나타났다. 아밀로오스 함량은 미국산이 27.6으로 가장 높고, 한국산이 가장 낮았다. 물결합력에서는 대만산의 시료가 가장 높고, 미국산이 가장 낮았다. 아밀로오스 함량이 비교적 높은 중국산과 미국산은 팽윤력과 용해도에서 낮게 나타났다. 신속점도측정기(RVA)에 의한 측정결과 최고점도, 가공의 안정성을 나타내는 breakdown, 노화에 밀접한 관계를 나타내는 setback 모두 미국산이 가장 높게 나타나 미국산이 비교적 hard gel한 경향을 나타내었다.

Keywords

References

  1. Cho SA, Kim SK. Particle size distribution, pasting pattern and texture of gel of acorn, mungbean and buckwheat starches. Korean J. Food Sci. Technol. 32: 1291-1297 (2000)
  2. Marshall HG, Pomeranz Y. Buckwheat description, breeding production and utilization: In advances in cereal science and technology. J. Am. Assoc. Cereal Chem. 59: 167-172 (1982)
  3. Taira H. Buckwheat. pp. 139. In: Encyclopedia of Food Technology. Johnson AH, Peterson MP (eds). Avi Publishing Co., Westport, CT, USA (1974)
  4. Mazz G, Campbell CG. Influence of water activity and temperature on dehulling of buckwheat. Cereal Chem. 62: 31-36 (1985)
  5. Mazz G. Buckwheat browning and color assessment. Cereal Chem. 63: 361-364 (1986)
  6. Shigehisa S, Toru I, Shinjiro C, Takayoshi M. The use of heterosis in buckwheat. Rept. Nat'l. Food Res. Inst. 34: 1-7 (1979)
  7. Kim SK, Hahn TR, Kwon TW, D'Appolonia BL. Physicochemical properties of buckwheat starch. Korean J. Food Sci. Technol. 9: 138-143 (1977)
  8. Chung KM. Molecular structure and lipid in starches for mook. Korean J. Food Sci. Technol. 23: 633-641 (1991)
  9. Jou RY. Physicochemical properties and gel forming properties of mungbean and buckwheat crude starches. Korean J. Food Sci. Technol. 52:1-4 (1989)
  10. Hizukuri S. Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr. Res. 147:342-347 (1986) https://doi.org/10.1016/S0008-6215(00)90643-8
  11. AACC. Approved Method of the AACC. 8th ed. American Association of Cereal Chemists, St. Paul, MN, USA (1991)
  12. Gilbert LM, Gilbert GA, Spragg SP. Amylose and amylopectin from potato starch. Meth. Carbohydr. Chem. 4: 25-27 (1964)
  13. Schoch TJ. Iodimetric determination of amylose. Meth. Carbohydr Chem. 4: 157-160 (1964)
  14. Juliano BO, Perez CM, Blakeney AB, Castillo T, Kongseree N, Laignelet B, Lapis ET, Murty VVS, Paule CM, Webb BD. International cooperative testing on the amylose content of milled rice. Starch/Starke 33:157-162 (1981) https://doi.org/10.1002/star.19810330504
  15. Blakeney AB, Welsh LA, Bannon DR. Rice quality analysis using a computer controlled RVA. 180-182. In: Cereal International. Martin DJ, Wrugley CW (eds). Royal Australian Chemical institute, Victoria, Australia (1991)
  16. Villareal CP, Juliano BO, Hizukuri S. Vrietal differences in amylopectin staling of cooked waxy milled rices. Cereal Chem. 70: 735-758 (1993)
  17. Wootton M, Bamunuarachchi A. Water binding capacity of commercial produced native and modified starches. Starch/Starke 30: 306 (1978) https://doi.org/10.1002/star.19780300905
  18. Lii CY, Chang SM, Yang HL. Correlation between the physicochemical properties and the eating quality of milled rice in Taiwan. Inst. Chem. Academia Sinica 33: 55-62 (1986)
  19. Colonna P, Bulen A, Mercier C. Pisum sativum and Vica faba carbohydrates: structural studies of starches. J. Food Sci. 46: 88-93 (1981) https://doi.org/10.1111/j.1365-2621.1981.tb14537.x
  20. Lee MS, Sohn KH. A study on the physicochemical properties of buckwheat starches. Korean J. Soc. Food Sci. 8: 291-296 (1992)
  21. Beleina A, Varriano-Marsyon E, Hoseney RC. Characterization of starch from pearl millets. Cereal Chem. 57: 300-303 (1980)
  22. Sandhya Rani MR, Bhattacharya KR. Rheology of riceflour pastes: Effect of variety, concentration, and temperature, and time of cooking. J. Text. Studies 20: 127-137 (1989) https://doi.org/10.1111/j.1745-4603.1989.tb00427.x
  23. Tester RF, Morrison WR. Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chem. 67: 551-557 (1990)
  24. Morrison WR, Tester FF, Snape CE, Law F, Gidley MJ. Swelling and gelatinization of cereal starches: Some effects of lipid-complexed amylose and free amylose in waxy and normal barley starches. Cereal Chem. 70: 385-391 (1993)
  25. Lii CY, Tsai ML, Tseng KH. Effect of amylose content on the rheological property of rice starch. Cereal Chem. 73: 415-420 (1996)
  26. Schoch TJ. Swelling power and solubility of granular starches. Meth. Carbohydr. Chem. 4: 106-108 (1964)
  27. Zobel HF. X-ray analysis of starch granules. Meth. Carbohydr. Chem. 4: 109-113 (1964)