고삼투압 및 저온 조건에서 sigma factor ${\sigma}^{B}$가 Listeria monocytogenes biofilm 생성에 미치는 영향

Effect of Sigma Factor ${\sigma}^{B}$ on Biofilm Formation of Listeria monocytogenes in High Osmotic and Low Temperature Conditions

  • 박상규 (대구대학교 생명환경학부) ;
  • 박신 (대구대학교 생명환경학부)
  • Park, Sang-Gyu (Division of Life and Environmental Science, Daegu University) ;
  • Park, Shin (Division of Life and Environmental Science, Daegu University)
  • 발행 : 2004.06.30

초록

L. monocytogenes가 biofilm을 생성하는데 ${\sigma}^{B}$가 어떤 영향을 미치는가를 구명하기 위해 L monocytogenes wild type인 10403S와 ${\sigma}^{B}$를 제거한 sigB null mutant의 biofilm 생성능을 고삼투압 및 저온 조건에서 비교하였다. 고삼투압 조건인 6%의 NaCl이 첨가된 BHI 배지에서 배양된 L. monocytogenes 10403S는 배양 72시간 후 $6.83{\pm}0.38\;log\;cfu/cm^{2}$의 biofilm을 생성하였으며, sigB null mutant의 경우는 $5.33{\pm}0.45log\;cfu/cm^{2}$ 의 biofilm을 생성하였는데, L. monocytogenes 10403S가 sigB null mutant보다 31.8배나 많은 biofilm을 생성하였다. 또한 L. monocytogenes 10403S를 6%의 NaCl이 첨가된 BHI 배지에서 배양했을 시 NaCl을 첨가하지 않은 배지에서 배양한 경우보다 4.7배나 많은 biofilm을 생성하였는데, L. monocytogenes 10403S와 같이 ${\sigma}^{B}$가 존재하는 경우 고삼투압 조건에서 biofilm을 더욱 많이 생성하였으며, ${\sigma}^{B}$가 biofilm의 생성에 영향을 미친다고 할 수 있었다. 또한 저온 조건($4^{\circ}C$ 배양)에서 ${\sigma}^{B}$가 biofilm 생성에 영향을 미치는지를 조사하였는데, ${\sigma}^{B}$는 저온 스트레스 시 biofilm 생성에 영향을 미치지 않는 것으로 나타났다.

Effects of sigma factor (${\sigma}^{B}$) on biofilm formation in Listeria monocytogenes 10403S and ${\sigma}^{B}-deficient$ sigB null mutant were studied under high osmotic and low temperature conditions. In brain heart infusion (BHI) medium containing 6% NaCl, wild type 10403S and ${\sigma}^{B}-deficient$sigB null mutant formed biofilms of $6.83{\pm}0.38\;and\;5.33{\pm}0.45\;log\;cfu/cm^{2}$, respectively. L. monocytogenes 10403S in BHI medium containing 6% NaCl formed 4.7 times larger biofilm than without NaCl. Culture of L. monocytogenes 10403S and sigB null mutant at $4^{\circ}C$ did not show any significant differences in biofilm formation. The results suggest biofilm formation is activated by ${\sigma}^{B}$ and NaCl, whereas not affected by low temperature stress in L. monocytogenes 10403S. More studies are necessary to determine biofilm formation mechanism in osmotolerant L. monocytogenes.

키워드

참고문헌

  1. Farber JM, Losos JZ. Listeria monocytogenes: a foodborne pathogenes. CMAJ 138: 413-418 (1988)
  2. Riedo FX, Pinner RW, Tosca DL, Cartter ML, Graves LM, Reeves MW, Weaver RE, Plikaytis BD, Broome CV. A pointsource foodborne listeriosis outbreak: documented incubation period and possible mild illness. J. Infect. Dis. 170: 693-696 (1994) https://doi.org/10.1093/infdis/170.3.693
  3. Mead P, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV. Food-related illness and death in the United States. Emer. Infect. Dis. 5: 607-625 (1999) https://doi.org/10.3201/eid0505.990502
  4. Loewen PC, Hengge-Aronis R. The role of sigma factor $O^{-B}$(katF) in bacterial global regulation. Annu. Rev. Microbiol. 48: 53-80 (1994) https://doi.org/10.1146/annurev.mi.48.100194.000413
  5. Cheville AM, Arnold KW, Buchrieser C, Cheng CM, Kasper CW. RpoS regulation of acid, heat, and salt tolerance in Escherichia coli O157:H7. Appl. Environ. Microbiol. 62: 1822-1824 (1996)
  6. Dineen SS, Takeuchi K, Soudah J, Boor K. Persistence of Escherichia coli O157:H7 in dairy fermentation systems. J. Food Prot. 61: 1602-1608 (1998)
  7. Haldenwang WG, Losick R. Novel RNA polymerase $\sigma$ factor from Bacillus subtilis. Proc. Natl. Acad. Sci. USA 77: 7000-7004 (1980) https://doi.org/10.1073/pnas.77.12.7000
  8. Wu S, de Lencastre H, Tomasz A. Sigma-B, a putative operon encoding alternate sigma factor of Staphylococcus aureus RNA polymerase: molecular cloning and DNA sequencing. J. Bacteriol. 178: 6036-6042 (1996)
  9. Becker LA, Cetin-Mehmet S, Hutkins RW, Bemson AK. Identification of the gene encoding the alternative sigma factor sigma B from Listeria monocytogenes and its role in osmotolerance. J. Bacteriol. 180: 4547-4554 (1998)
  10. Wiedmann M, Arvik TJ, Hurley RL, Boor KJ. General stress transcription factor $O^{-B}$ and its role in acid resistance and virulence of Listeria monocytogenes. J. Bacteriol. 180: 3650-3656 (1998)
  11. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318-1322 (1999) https://doi.org/10.1126/science.284.5418.1318
  12. O'Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54: 49-79 (2000) https://doi.org/10.1146/annurev.micro.54.1.49
  13. Chae MS, Schraft H. Comparative evaluation of adhesion and biofilm formation of different Listeria monocytogenes strains. Int. J. Food Microbiol. 62: 103-111 (2000) https://doi.org/10.1016/S0168-1605(00)00406-2
  14. Jeong DK, Frank JF. Growth of Listeria monocytogenes at 21oC in biofilms with micre-organisms isolated from meat and dairy processing environments. Lebensm.-Wiss. u.-Technol. 27: 415-424 (1994) https://doi.org/10.1006/fstl.1994.1087
  15. Rachid S, Ohlsen K, Wallner U, Hacker J, Hecker M, Ziebuhr W. Alternative transcription factor $\sigma^B$ is involved in regulation of biofilm expression in a Staphylococcus aureus mucosal isolate. J. Bacteriol. 182: 6824-6826 (2000) https://doi.org/10.1128/JB.182.23.6824-6826.2000
  16. Lindsay D, Holy AV. Evaluation of dislodging methods for laboratory-grown bacterial biofilms. Food Microbiol. 14: 383-390 (1997) https://doi.org/10.1006/fmic.1997.0102
  17. Mafu AA, Roy D, Goulet J, Magny P. Attachment of Listeria monocytogenes to stainless steel, glass, polypropylene, and rubber surfaces after short contact times. J. Food Prot. 53: 742-746 (1990)
  18. Ko R, Smith LT, Smith GM. Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J. Bacteriol. 176: 426-431 (1994)