단세포 함유 반응물 제조를 위한 과일과 채소류의 가공 특성

Macerating Properties of Fruits and Vegetables for Suspensions Containing Single Cells

  • 발행 : 2004.02.28

초록

농산물중 과일과 채소류 6종류인 딸기, 단감, 키위, 양파, 마늘 및 오이를 대상으로 식물세포분리효소인 Sumyzyme MC 처리 후 얻어진 단세포 함유 반응물의 반응률, 용량, brix, 색도, 입도분포, 점도 및 현미경 관찰로 특성을 조사하였다. 단세포화 후 반응률은 단감과 딸기가 90% 이상, 키위가 80% 이상으로 원료에 따라 상이하였다. 이와 같이 농산물의 성분변화를 최소화하면서 단세포화에 필요한 적정 반응조건을 조사하였다. 단세포물에 함유된 수용성, 불용성 식이섬유가 풍부한 마늘의 경우 생시료의 총식이섬유의 함량이 30.77%인데 비하여 단세포물의 경우 18.55%로 나타났다. 식물세포분리효소에 의해 얻어진 과일, 채소류 단세포 함유 반응물의 미세구조 관찰에서 개개의 단세포화가 이루진 것으로 나타났다. 따라서 효소적으로 세포분리한 각종 과일, 채소류 단세포 함유 반응물은 단세포 함유 식품의 제조에 필요한 기본 원료로 이용될 수 있을 것으로 판단된다.

Cell-separating enzyme (Sumyzyme MC) was used to investigate enzymatic maceration of strawberry, sweet persimmon, kiwi, onion, garlic, and cucumber, Maceration rate, volume, brix, color, particle size distribution, and viscosity were determined, and microscopic observation made on suspensions containing single cells. Sweet persimmon and strawberry showed over 90% meceration rates, and kiwi showed 80%. Color, storage test, and sensory evaluations of single-cell suspensions and their filtrates were performed before and after sterilization. Total dietary fiber contents of raw material and single-cell suspension of garlic were 30.77 and 18.55%, respectively, Results indicate fruit and vegetable suspensions produced through enzymatic disintegration using cell-separating enzyme can be utilized as basic materials in the manufacture of single-cell foods.

키워드

참고문헌

  1. Guillon F, Thibault J, Rombouts FM, Voragen AGJ, Pilnik W. Enzymic hydrolysis of the hairy fragments of sugar beet pectins. Carbohydr. Res. 190: 97-108 (1989) https://doi.org/10.1016/0008-6215(89)84150-3
  2. Aspinall GO. Chemistry of cell wall polysaccharides. p. 473. In: The biochemistry of plants. Preiss J (ed). Academic Press, New York, NY, USA (1980)
  3. Selvendran RR, Stevens BJH, Du pont MS. Dietary fiber: chemistry, analysis, and properties. Adv. Food Res. 31: 117-132 (1987)
  4. Selvendran RR. The chemistry of plant cell walls. p. 95. In: Dietary Fibre. Birch GG, Parker KJ (ed). Applied Science Publishers, London, UK (1983)
  5. Haard NF. Characteristics of edible plant tissues. p. 86. In: Food chemistry. Fennema OR (ed). Marcel Dekker, Inc., New York, NY, USA (1985)
  6. Brett CT, Waldron KW. Physiology and biochemistry of plant cell walls, 2nd ed., Chapman & Hall, London, UK. p. 45 (1996)
  7. Rolin C, DeVries JP. In 'Food gels' Harris P (ed.). p. 422. Elsevier Applied Science, New York, USA (1990)
  8. Park YK, Kang YH. Enzymatic maceration of vegetables with cell separating enzymes. Korean J. Postharvest Sci. Technol. 7: 184-188 (2000)
  9. Lin MJY, Humbert ES, Sosulski FW. Certain functional properties of sunflower meal products. J. Food Sci. 39: 368-370 (1974) https://doi.org/10.1111/j.1365-2621.1974.tb02896.x
  10. Lee DH, Lee SC, Hwang YI. Processing properties of kiwifruit treated with protopectinase. J. Korean Soc. Food Sci. Nutr. 29: 401-406 (2000)
  11. Lee DH, Lee SC, Hwang YI. Characteristics of sweet persimmon treated with protopectinase from Bacillus subtilis EK11. J. Korean Soc. Food Sci. Nutr. 32: 29-34 (2003) https://doi.org/10.3746/jkfn.2003.32.1.029
  12. Hwang SH, Kim JI, Sung CJ. Analysis of dietary fiber content of some vegetables, mushrooms, fruits and seaweeds. Korean J. Nutrition. 29: 89-96 (1996)
  13. Lee HA, Lee SS, Shin HK. Effect of dietary fiber source on the composition of intestinal microflora in rats. Korean J. Nutr. 27: 988-995 (1994)
  14. Robertson JA, Eastwood MA. An investigation of the experimental conditions which could affect water holding capacity of dietary fiber. J. Sci. Food Agric. 32: 819-825 (1981) https://doi.org/10.1002/jsfa.2740320811