Antioxidant Effects and Application as Natural Ingredients of Korean Sanguisorbae officinalis L.

한국산 지유(地楡)(Sanguisorbae officinalis L.)의 항산화 효과 및 천연소재로서의 활용방안

  • Lee, Jin-Tae (Department of Cosmetic Engineering, Daegu Haany University) ;
  • Lee, Soon-Ae (Department of Cosmetic Engineering, Daegu Haany University) ;
  • Kwak, Jae-Hoon (Department of Cosmetic Engineering, Daegu Haany University) ;
  • Park, Jung-Mi (Department of Cosmetic Engineering, Daegu Haany University) ;
  • Lee, Jin-Young (Department of Cosmetic Engineering, Daegu Haany University) ;
  • Son, Jun-Ho (Department of Cosmetic Engineering, Daegu Haany University) ;
  • An, Bong-Jeun (Department of Cosmetic Engineering, Daegu Haany University)
  • 이진태 (대구한의대학교 화장품공학과) ;
  • 이순애 (대구한의대학교 화장품공학과) ;
  • 곽재훈 (대구한의대학교 화장품공학과) ;
  • 박정미 (대구한의대학교 화장품공학과) ;
  • 이진영 (대구한의대학교 화장품공학과) ;
  • 손준호 (대구한의대학교 화장품공학과) ;
  • 안봉전 (대구한의대학교 화장품공학과)
  • Published : 2004.06.30

Abstract

Biological activities and application of Sanguisorbae officinalis L. were investigated. In the enzymological physiological activities, the electron donating ability (EDA) was 54.9% in 10 ppm and it was over 90% over 50 ppm and SOD-like activity was high as 65.4% in 1000 ppm, it was gradual increased. As inhibitory effect of xanthine oxidase, it was 17.9% in 200 ppm and little low as 36.9% in 500 ppm and inhibitory effect of tyrosinase. As the result of measuring the lipid oxidation, all the concentrations of medical ion treatments had the ability to keep it from acidification and metal ion blocking effects about the lipid oxidation promoting factors ($Fe^{2+}$ and $Cu^{2+}$), $Fe^{2+}$ was better than $Cu^{2+}$ and all concentrations of medical ion treatments was 40% in 50 ppm. When it was applied into normal skin-softener it showed safe effect so that we can expect that as the natural material of cosmetics.

본 연구는 탄닌 성분을 다량 함유한 지유를 각종 효소학적 생리활성을 검토함으로서 식품 및 화장품산업에 응용 시 제품의 안정성과 기능성을 나타낼 수 있는 천연소재로서의 역할을 검토하였다. 효소학적 생리활성 실험에서의 전자공여능은 10 ppm에서는 54.9%, 50 ppm이상의 시료농도에서는 90% 이상의 높은 전자 공여능을 나타내었고, SOD-유사활성능은 1000 ppm에서 65.4%의 높은 활성이 나타내었으며, 농도가 증가함에 따라 유의적인 차이를 나타내었다. Xanthine oxidase의 저해활성을 관찰한 결과 200 ppm의 농도에서 17.9%로 나타내었으며, 500 ppm에서는 36.9%로 비교적 낮은 저해효과를 나타내었으나, 지방 산패도 측정 결과 시료농도 모두 지방 산패를 저해하는 능력이 뛰어 났으며, 지방 산화 촉진인자인 $Fe^{2+},\;Cu^{2+}$ 이온에 대한 금속이온 포집능력을 관찰한 결과 $Fe^{2+}$보다 $Cu^{2+}$ 이온의 포집 능력이 뛰어 났으며,시료농도 모두 50 ppm에서 40% 이상의 포집능력을 나타내었다. 이와 같이 지유 추출물은 기능성이 우수한 것으로 나타나 식품 및 화장품 제조시 유용하게 사용할 수 있어 천연소재로서의 개발가능성을 보여주었다.

Keywords

References

  1. Boo, Y. C., Jeon, C. O., Kim, J. S. and Park, S. N. (1993) Effect of tea catechins on the hydroxyl radical induced degradation of DNA components. Preprint, 1st Scientific Conference of the Asian Soc. Cosm Sci. pp. 143-149
  2. Bailey, A. J., Robinson, S. P. and Balian, G. (1974) Biological significance of the intennolecular crosslinks of collagen, Nature 251, 105-109 https://doi.org/10.1038/251105a0
  3. Ha, B. J. (2001) In Cosmeceuticals. Shingwang Press, Seoul, p. 55.
  4. Kasuga, A., Aoyagi, Y. and Sugahara, T. (1998) Antioxidants activities of edible plants. Nippon Shokuhin Kogyo Gakkaishi 35, 22
  5. Larson, R. A. (1988) The antioxidants of higher plants. Phytochemistry 27, 969 https://doi.org/10.1016/0031-9422(88)80254-1
  6. In Collaboration with a national college of oriental medicine herbology professor association. (1994) Herbology, Yonglim Press, Seoul, pp. 392-393
  7. Blois, M. S. (1958) Antioxidant determination by the use of a stable free radical. Nature 26, 1198-1202
  8. Marklund, S. and Marklund, G. (1974) Involvement of sllperoxtde anion radical in the oxidation of pyrogallol and a convenient assay for superoxide dismmutase. Eur. J. Bioch. 47, 468-474
  9. Stirpe, F. and Corte, E. D. (1969) The Regulation of rat liver xanthine oxidase. J. Biol. Chem. 244, 3855-3861
  10. Yagi A, Kanbara T, Morinobu N. (1986) The effect of tyrosinase inhibition for Aloe. Planta Med. 3981, 517-519
  11. Buege, J. A. and Aust, S. D. (1978) Microsomal lipid peroxidation. Method Enzymol. 105, 302-310.
  12. Kim, H. K., Kim, Y. E., Do, J. R., Lee, Y. C. and Lee, B. Y. (1995) Antioxidative activity and physiological activity of some krean medical plants. Korean J. Food Sci. Technol. 27, 80-85
  13. Kang, Y. R., Park, Y. K. and Lee, G. D. (1996) The nitrite scavenging and electron donating ability of phenolic compounds. Korean J. Food Sci. Technol. 28, 232
  14. Mahoney, J. R. and Graf, E. (1986) Role of alpha-tocopHerol, ascorbic acid citric acid and EDTA as oxidants in rondel system. J. Food Sci. 51, 1293-1296 https://doi.org/10.1111/j.1365-2621.1986.tb13108.x
  15. Pryor, W. A. (1986) Oxy-radicals and related specied: their formation, lifetimes and reactions. Ann. Rev. Physiol. 48, 657-667 https://doi.org/10.1146/annurev.ph.48.030186.003301
  16. Saul, R. I., Gee, P. and Ames, B. N. (1987) Free radicals. DNA damage, and aging. In morden biological theoies aging, Warner, H. R., Butler, R. N. Sprott, R. L. and Schneider, E. L(eds.), Raven Press, NY, USA, p. 113
  17. Bannister, J. V., Bannister, W. H. and Rotilio, G. (1987) Aspects of the structure, function and applications of superoxide dismutase. CRC Crit. Rev. Biochem. 22, 111-180 https://doi.org/10.3109/10409238709083738
  18. Bowler, C., Van Montagu, M. and Inze, D. (1992) Superoxide dismutase and stress tolerance. Ann. Rev. Plant Physiol. 43, 83
  19. Donnelly, J. K., McLellan, K. M., Walker, J. L. and Robinson, D. S. (1989) Superoxide dismutases in foods. Food Chem. 33, 243-270 https://doi.org/10.1016/0308-8146(89)90036-8
  20. Kim, S. J., Han, D. S., Moon, K. D. and Rhee, J. S. (1995) Measurement of superoxide dismutase-like activity of natural antioxidants. Biosci. Biotech. Biochem. 59, 822-826
  21. Korycka-Dahl, M., Richardson, T. and Hicks, C. L. (1979) Superoxide dismutase activity in bovine milk serum, J. Food Prot. 42, 867-871
  22. Hicks, C. L., Bucy, J. and Stofer, W. (1979) Heat inactivation of superoxide dismutase in bovine milk. J. Dairy Sci. 62, 529-532 https://doi.org/10.3168/jds.S0022-0302(79)83285-3
  23. Walker, J. L., McLellan, K. M. and Robinson, D. S. (1987) Heat stability of superoxide dismutase in cabbage. Food Chem. 23, 245-256 https://doi.org/10.1016/0308-8146(87)90112-9
  24. Rotilio, G., Bray, R. C. and Fielden, E. M. (1972) A pulse radiolysis study of superoxide dismutase. Biochem. Biophys Acta. 268, 605-609
  25. Klug, C., Rabani, J. and Fridovich, I. (1972) A direct demonstration of catalytic action of superoxide dismutase through the use of pulse radiolysis. J Biol. Chem. 247, 4839-4842
  26. Nice, D. J., Robinson, D. S. and Jolden, M. A. (1995) Characterisation of a heat- stable antioxidant co-purified with the superoxide dismutase activity from dried peas. Food Chem. 52, 393-397 https://doi.org/10.1016/0308-8146(95)93288-3
  27. Hong, H. D., Kang, N. K. and Kim, S. S. (1998) Superoxide dismutase-like activity of apple juice mixed with some fruits and vegtables. Korean J. Food Sci. Technol. 30, 1484-1487
  28. Jonnes, P. H. (1973) Iodinine as an antihypertensive agent. Ibid. 3, 679
  29. Storch, H. and Ferber, E. (1988) Detergent-amplified chemiluminescence of lucigenin for determination of superoxide anion production by NADPH oxidase and xanthine oxidase. Anal. Biochem. 169, 262-267 https://doi.org/10.1016/0003-2697(88)90283-7
  30. Kelley, W. N. and J. B. (1974) Wyngarden: Enzymology of gout. Adv. Enzymol. 41, 23-28
  31. Hatano, T., Yasuhara, T., Fukuda, T., Noro, T. and Okuda, T. (1989) Phenolic constituents of Licorce. II. Structures of Licopyranocoumarin, Licoaryl- coumarin and Glisoflavone, and inhibitory effects of Licorice phenolics on xanthine oxidase. Chem. Pharm. Bull. 37, 3005-3009 https://doi.org/10.1248/cpb.37.3005
  32. Hayashi, T., Sawa, K., Kawasaki, M., Arisawa, M., Shimizu, M. and Morita, N. (1988) Inhibition of cow's milk xanthine oxidase by flavonoids. J. Nat. Prod. 51, 345-348 https://doi.org/10.1021/np50056a030
  33. Cho, Y. C., An, B. J. and Choi, C. (1993) Isolation and enzyme inhibition of tannins from Korean green tea, Korean Biochem. J. 26, 216-223
  34. An, B. J., Lee, J. T, and Bae, M. J. (1998) Isolation of a novel polyphenol from oolong tea and its effective prevention of the gout. Korean J. Food Sci. Technol. 30, 970-975
  35. Farag, R. S., Badei, A. Z. M. A., Hawedi, F. M. and Elbaroty, G. S. A. (1989) Antioxidant activity of some spice essential oils on linoleic acid oxidation in aqueous media. JAOCS. 66, 792-799 https://doi.org/10.1007/BF02653670
  36. Vekiari, S. A., Oreopoulou, v., Tizg, C. and Thomopoulas, C. D. (1993) Oregano flavonoids as lipid antioxidants. JAOCS. 70, 483-487 https://doi.org/10.1007/BF02542580
  37. Choi, U., Shin, D. H., Chang, Y. S. and Shin, J. I. (1992) Antioxidant activity of ethanol extract from Rhus javanica Linne on edible oil. Korean J. Food Sci. Technol. 24, 320-325
  38. Lim, D. K., Choi, U., Shin, D. H. and Jeong, Y. S. (1994) Antioxidative effect of propolis extract on palm oil and lard. Korean J. Food Sci. Technol. 26, 622-626
  39. Lim, D. K., Choi, U. and Shin, D. H. (1996) Antioxidative activity of ethanol extract from korean medicinal plants. Korean J. Food Sci. Technol. 28, 83-89
  40. Chan, W. K. M., Decker, E. A., Lee, J. B. and Butterfield, D. A. (1994) EPR spin-trapping studies of the hydroxyl radical scavenging activity of carnosine and related dipeptides. J. Agric. Food Chem. 42, 1407-1410 https://doi.org/10.1021/jf00043a003
  41. Halliwell, B. and Gutteridge, J. M. C. (1984) Oxygen toxicity. Oxygen radicals, transition metals and disease. Biochem. J. 219, 1-14