Phylogeny of Korean Rhus spp. Based on ITS and rbcL Sequences

ITS 및 rbcL 염기서열에 근거한 한국 자생 옻나무속의 계통분류

  • Lee, Won-Kyung (Division of Applied Plant Sciences, Kangwon Natl. Univ.) ;
  • Kim, Myong-Jo (Division of Applied Plant Sciences, Kangwon Natl. Univ.) ;
  • Heo, Kweon (Division of Applied Plant Sciences, Kangwon Natl. Univ.)
  • 이원경 (강원대학교 농업생명과학대학 식물응용과학부) ;
  • 김명조 (강원대학교 농업생명과학대학 식물응용과학부) ;
  • 허권 (강원대학교 농업생명과학대학 식물응용과학부)
  • Published : 2004.03.31

Abstract

This study was carried out to confirm the phylogenetic relationships in Korean Rhus species. Sequences from internal transcribed spacers (ITS) of nuclear ribosomal DNA and rbcL gene of chloroplast DNA were determined. Cotinus coggygria was selected as outgroup because it is closest allied with Rhus in Anacardiaceae. Also, ingroup was limited as six Korean Rhus species. ITS 1 sequences in six species of Rhus and one species of Cotinus ranged from 246 to 253 bp and ITS 2 sequences from 234 to 244 bp. Concerning the G+C content of the studied taxa, ITS 1 sequences ranged from 58.0 to 68.13% and ITS 2 from 59.75 to 68.46%. On the other hand, rbcL sequences were same size in the all species examined by 1,428 bp. G+C contents of rbcL sequences were ranged from 43.56 to 43.77% which means there are nearly no different from interspecies each other. Phylogenetic tree strongly supports the colse relationships between R. succedanea and R. sylvestris. Rhus javanica and Cotinus coggygria were also closely allied with each other in ITS and rbcL trees. Therefore, R. javanica was regarded as most primitive species among the Korean Rhus species. ITS 1 region of nuclear ribosomal DNA was suggested as very useful taxonomical marker for genus Rhus.

한국산 옻나무속 6종에 대하여 분자식물학적 방법으로 계통유연관계를 확인하기 위하여, nrDNA의 ITS 구간과 cpDNA rbcL 염기서열을 사용하여 계통분석한 결과 ITS 1의 길이는 $246{\sim}253\;bp$이었고, ITS 2는 $234{\sim}244\;bp$이었다. ITS 1의 길이는 Rhus sylvestris와 R. succedanea에서 246 bp로 가장 작았으며, R. verniciflua에서 253 bp로 가장 긴 것으로 나타났다. ITS 2의 길이는 R. verniciflua가 234 bp로 가장 짧았으며, R. trichocarpr가 244 bp로 가장 길게 나타났다. 이들 분류군의 G+C Content는 ITS 1에서는 $58.0{\sim}68.13%$의 범위를 나타냈고, ITS 2에서는 $59.75{\sim}68.46%$로 나타나 두 구간이 비슷한 비율을 보이고 있었다. ITS 1에서의 G+C content는 R. sylvestris가 58.0%로 가장 낮았으며, 가장 높은 값은 R. ambigua가 68.13%로 확인되었다. ITS 2에서는 외군인 Cotinus coggygria가 59.75%로 가장 낮았으며, R. ambigua가 68.46%로 가장 높게 나타났다. 한국산 옻나무 속에서 ITS 염기서열은 일반적으로 피자식물이 갖는 G+C content 범위 안에 포함되는 것으로 확인되었다. 한편, rbcL의 길이는 1,428 bp로 모든 종에서 동일하였다. 또한 rbcL의 G+C content는 $43.56%{\sim}43.77%$로 나타나 종간에 거의 차이가 없음을 확인하였다. 연구결과 rbcL gene은 옻나무속의 종간 계통유연관계를 해석하는데 유용하지 않았으며, ITS 1 구간의 염기서열 변이는 향후 옻나무속을 분류할 때 신속하게 분류할 수 있는 분류 marker로 이용할 수 있다고 판단되었다.

Keywords

References

  1. Balkley FA (1937) A monographic study of Rhus and its immediate allies in north and central America including the west Indies. Ann. Missouri Bot. Gard, 24:265-500 https://doi.org/10.2307/2394183
  2. Baldwin BG, Sanderson MJ, Porter JM, Wokciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: A valuable source of evidence of angiosperm phylogeny. Ann. Missouri Bot. Gard, 82:247-277 https://doi.org/10.2307/2399880
  3. ChungJM, Kim SS (1997) Reconsideration of Rhus (Anacardiaceae) with respect to fruit, seed and inflorescence. J. Korean For. Soc. 86(3):288-300
  4. Fernald ML (1950) Gray's manual of botany, 8th edition. American Book Company. P. 976-979
  5. Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evol, 39:783-791 https://doi.org/10.2307/2408678
  6. Hoot SB (1995) Phylogeny of the Ranunculaceae based on preliminary atpB, rbcL and 18S nuclear ribosomal DNA sequence data. Plant Syst. Evol. [Suppl.] 9:241-251
  7. Judd WS, Campbell CS, Kellogg EA, Stevens PF (1999) Plant Systematics: A Phylogenetic Approach. Sinauer Associates, Sunderland, MA U.S.A. p. 338-340
  8. Kass E, Wink M (1996) Molecular evolution of the Leguminosae: phylogeny of the three subfamilies based on rbcL sequences. Biochem. Syst. & Ecology 24(5):365-378 https://doi.org/10.1016/0305-1978(96)00032-4
  9. Kim YK (1988) A study on the pollen morphology of Anacardiaceae in Korea. Master Thesis, Chonbuk National University
  10. Kim SS, Chung JM (1995) Taxonomic characteristics of Korean native Anacardiaceae. J. Korean For. Soc. 84(2):151-165
  11. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparable studies of nucleotide sequences. J. Mol. Evol, 16:111-120 https://doi.org/10.1007/BF01731581
  12. Lee TB (2003) Coloured Flora of Korea. Hyangmoonsa, Seoul, Korea. p. 684-687
  13. Miller AJ, Young DA, Wen J (2001) Phylogeny and biogeography of Rhus (Anacardiaceae) based on ITS sequence data. J. Plant Sci. 162(6):1401-1407 https://doi.org/10.1086/322948
  14. Okamoto S (1994) Botanical World. Weekly Magazine of Asahi News Paper Co. Japan. 32:236-246
  15. Olmstead RG, Reeves PA (1995) Evidence for the polyphyly of the Scropulariaceae based in chloroplast rbcL and ndhF sequences. Ann. Missouri Bot. Gard. 82:176-193 https://doi.org/10.2307/2399876
  16. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-termination inhibitors. Proc. Natl, Acad. Sci. USA. 74:5463-5467 https://doi.org/10.1073/pnas.74.12.5463
  17. Swofford DL (1998) PAUP: Phylogenetic analysis using parsimony, version 4.0.1 Sinauer, Sunderland, Massachusetts, USA
  18. Takhtajan AL (1997) Diversity and Classification of Flowering Plants. Columbia University Press, New York, USA. p. 643
  19. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25:4876-4882 https://doi.org/10.1093/nar/25.24.4876
  20. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. Innis, S. Gelfand, J. Sninsky, and T. White (eds.), PCR Protocols: A guide to methods and application. Academic Press, San Diego. p. 315-322
  21. Yokota Yl, Kawata T, Iida Y, Kata A, Tanifuji S (1989) Nucleotide sequences of the 5.85 rRNA gene and internal transcribed spacer regions in carrot and broad bean ribosomal DNA. J. Mol. Evol. 29:294-301 https://doi.org/10.1007/BF02103617