Effects of Bupleurum falcatum Extract on the Survival of Cancered ICR Mouse and the Growth of Cancer Cells such as J774A.1 Cells and L1210 Cells

시호추출물의 ICR 발암생쥐의 생존율 및 J774A.1 세포와 L1210 세포의 증식에 미치는 영향

  • Ha, Kye-Kyung (Department of Herbal Pharmaceutical Development, Korea Institute of Oriental Medicine) ;
  • Jung, Dae-Young (Department of Chemistry, College of Natural Science, Sangmyung University) ;
  • Park, Sie-Won (Department of Chemistry, College of Natural Science, Sangmyung University)
  • 하혜경 (한국한의학연구원 한약제제연구부) ;
  • 정대영 (상명대학교 화학과) ;
  • 박시원 (상명대학교 화학과)
  • Published : 2004.12.30

Abstract

The current investigation was carried out to find out the anticancer activity of the methanol extract from Buplerum falcatum against cancered ICR mouse and cancer cell lines such as J774A.1 and L1210 cells. Extract of Buplerum falcatum displayed the considerable augmentation(134%) of the survival of ICR mouse bearing Sarcoma 180 cancer. In addition, the cytotoxic effects of methanol extract of Buplerum falcatum against J774A.1 cells and L1210 cells were found to show $IC_{50}$ values of $57.3\;{\mu}g/ml$ and $54.6\;{\mu}g/ml$, respectively. In contrast to such cytotoxicity against cancer cells, the extract exerted only meagre toxicity against normal lymphocytes. The increased generation of $O_2^-$ and the considerably increased activities of super-oxide dismutase(SOD) and glutathione peroxidase(GPx) of both J774A.1 cells and L1210 cells in the presence of Buplerum falcatum extract implied that the observed cytotoxicities may have resulted from the detrimental effect of reactive oxygen species(ROS) evoked by Buplerum falcatum extract on the cancer cells.

Keywords

References

  1. Matsumoto, T, Cyong, J. C., Kiyohara, H., Matsui, H., Abe, A., Hirano, M., Danbara, H., and Yamada, H. (1993) The pectic polysaccharide from Bupleurum falcatum L. enhances immune complexes binding to peritoneal macrophages through Fc receptor expression. Inter. J. Immunopharmacol. 15: 683-693 https://doi.org/10.1016/0192-0561(93)90141-K
  2. Guo, Y., Matsumoto, T., Kikuchi, Y., Ikejima, T., Wang, B., and Yamada, H. (2000) Effect of a pectic polysaccharide from a medicinal herb, the roots of Bupleurum falcatum L. on interleukin 6 production of murine B cells and B cell lines. Immunopharmacol. 49: 307-316 https://doi.org/10.1016/S0162-3109(00)00245-9
  3. Yamada, H., Hirano, M., and Kiyohara, H. (1991) Partial structure of an antiulcer pectic plysaccharides from roots of Buplerum falcatum. Carbohyd. Res. 219: 173-192 https://doi.org/10.1016/0008-6215(91)89050-P
  4. Yamada, H., Sun, X. B., Matsumoto, T., Ra, K. S., Hirano, N., and Kiyohara, H. (1991) Purification of anti-ulcer polysaccharides from the roots of Buplerum falcatum. Plant Medicine. 57: 555-559 https://doi.org/10.1055/s-2006-960205
  5. Astrow, A. B. (1994)' Rethinking cancer. Lancet 343: 494-499 https://doi.org/10.1016/S0140-6736(94)91454-0
  6. Bailer, J. C. and Gormick, H. L. (1997) Cancer undefeated. N. Eng. J. Med. 336: 1569-1573 https://doi.org/10.1056/NEJM199705293362206
  7. Lopes, C., Garcia, M., Benavides, F, Shen, J., Conti, C. J., Alvarez, E., and Hajos, S. E. (2003) Multidrug resistance modulators PSC 833 and CsA show differential capacity to induce apoptosis in lymphoid leukemia cell lines independently of their MDR phenotype. Leukemia Res. 27: 413-423 https://doi.org/10.1016/S0145-2126(02)00216-3
  8. Cook, J. A, Gius, D., Wibk, D. A, Krishna, M.C., Russo, A, and Mitchell, J. B. (2004) Oxidative stress, redox, and the tumor microenvironment. Seminars Radiat. Oneol. 14: 259-266 https://doi.org/10.1016/j.semradonc.2004.04.001
  9. Pelicano, H., Carney, D., and Huang. P. (2004) ROS stress in cancer cells and theraputic implications. Drug Resist. Updates. 7: 97-110 https://doi.org/10.1016/j.drup.2004.01.004
  10. Wiseman, H. and Halliwell, B. (1996) Damage to DNA by reactive oxygen species and nitrogen species: role in inflammatory diesease and progression to cancer Biochem. J. 313: 1729-1734
  11. Lai, M. T, Huang, K. L., Chang, W. M., and Lai, Y. K. (2003) Geldamycin induction of grp78 requires activation of reactive oxygen species via ER stress responsive elements in 9L rat brain tumor cells. Cellular Signaling 15: 585-595 https://doi.org/10.1016/S0898-6568(03)00004-4
  12. Steel, V. E. (2003) Current mechanistic approaches to the chemoprevention of cancer. J. Biochem Molecul BioI. 36: 7881
  13. Tudor, G., Gutierrez, P., Gutierrz, A. A., and Sausville, E. A (2003) Cytoxicity and apoptosis of benzoquinones' redox cycling, cytochrome c release and BAD proteim expression. Biochem. Pharmacol. 65: 1061-1075 https://doi.org/10.1016/S0006-2952(03)00013-3
  14. Childs, A c., Phaneuf, S. L., Dirks, A J., Phillips, T., and Leeuwenburgh, C. (2002) Doxorubicin treatment in vivo causes cytochromec release and cardiomyocyte apoptosis, as well as increased mitochondrial efficientcy, superoxide dismutase activity, and Bcl-2:Bax Ratio. Cancer Res. 62: 4592-4598
  15. Boyum, A. (1968) Isolation of leukocytes from human blood. Scan. J. Clin. Invest. 21: 9-14 https://doi.org/10.3109/00365516809168026
  16. Markesbery, W. R. (1994) Oxidative stress hypothesis in Alzheimer disease. Free Radical Bio. Med. 23: 134-139 https://doi.org/10.1016/0002-9343(57)90364-9
  17. McCord, J. and Fridovich, I. (1969) Superoxide dismutase. An enzymatic function for erythrocuprein(heterocuprein). J. Biol. Chem. 244: 6049-6054
  18. Maral, J., Puget K., and Michelson, A. M. (1977) Comparative study of superoxide dismutase, catalase, glutathione peroxidase levels in erythrocytes of different animals. Biochern. Biophys. Res. Cornrnun. 77: 1525-1531 https://doi.org/10.1016/S0006-291X(77)80151-4