Thin Layer Chromatography: Bioactive Metabolites of Components of Traditional Chinese Medicines by Intestinal Bacteria

  • Kim, Dong-Hyun (College of Pharmacy and East-West Pharmaceutical Research Institute, Kyung Hee University)
  • 발행 : 2004.08.31

초록

Traditional Chinese Medicines (TCM) have attracted great interest in recent researchers as alternative medicines for incurable diseases. This review focuses on qualitative and quantitative analytical approaches for bioactive metabolites of components flavonoids and saponins of traditional Chinese medicines by TLC system, although various methods have been introduced. Emphasis will be put on the processes of metabolite extraction from intestinal bacterial cultures or urines, separation (mobile phase) and detection. The identified metabolites by selection of extraction solvent and detection methods are also discussed. In addition, metabolite determinations of flavonoids (baicalin, apiin, rutin, quercetin, quercitrin, kaempferol, diosmin, hesperidin, poncirin, naringin, puerarin, daidzin, daidzein, tectoridin) and saponins (ginsenosides, kalopanaxsaponins, glycyrrhizin, chiisanoside, saikosaponins, soyasaponins) in culture fluid, in urine and in some herbal formula extracts are summarized. These bioactive metabolites of these components by intestinal microflora should be connected to pharmacological actions.

키워드

참고문헌

  1. Abe N., Ebina T., and Ishida N., Interferon induction by glycyrrhizin and glycyrretinic acid in mice. Micivbiol. Immunol., 26, 535-539 (1982)
  2. Ahmed F., Vyas V., Saleem A., Li X.G., Zamek R., Comfield A., Haluska R., Ibrahim N., Rubin E.H., and Gupta E., Highperformance liquid chromatographic quantitadon of total and lactone 20(S)-camptothecin in patients receiving oral 20(S)-camptothecin. J. Chromatogr. B Biomed. Sci. AppI. 707, 227-233 (1998) https://doi.org/10.1016/S0378-4347(97)00615-4
  3. Akao T., Akao T., and Kobashi K., Purification and characterization of 7beta-hydorxysteroid dehydrogenase from Ruminococcus sp of human intestine. J. Biochem. 102, 613-619 (1987) https://doi.org/10.1093/oxfordjournals.jbchem.a122095
  4. Akao T., Akao T., Hattori M., Namba T., and Kobashi K., Purification and properties of 3alpha-hydroxyglycyrrhetinate dehydrogenase of Clostridium innocuun form human intestine. J. Biochem. 103, 504-507 (1988)
  5. Akao T., Kida H., Kanaoka M., Hattori M., and Kobashi K., Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J. Pharm. Pharmacol., 50, 1155-1160 (1998) https://doi.org/10.1111/j.2042-7158.1998.tb03327.x
  6. Akao T. Kawabata K., Yanagisawa E., Ishihara K., Mizuhara Y., Wakui Y., Sakashita Y., and Kobashi K., Baicalin, the predominant flavone glucuronide of scutellariae radix, is absorbed from the rat gastrointestinal tract as the aglycone and restored to its original form. J. Pharm. Pharmacol., 52, 1563-1568 (2000) https://doi.org/10.1211/0022357001777621
  7. Baccou J.C., Lambert F., and Sauvaire Y., Spectrophotometric method for the determination of total steroidal sapogenin. Analyst 102, 458-465 (1977) https://doi.org/10.1039/an9770200458
  8. Bae E.A., Han M.J., Lee K.T., Choi J.W., Park H.J., and Kim D.H., Metabolism of 6"-0-xylosyltectoridin and tectoridin by human intestinal bacteria and their hypoglycemic and in vitro cytotoxic activities. Biol. Pharm. Bull. 22, 1314-1318 (1999) https://doi.org/10.1248/bpb.22.1314
  9. Bae E.A., Park S.-Y., and Kim D.-H., Constitutive $\beta$-glucosidases hydrolyzing ginsenoside Rbl and Rb2 from human intestinal bacteria. Biol. Pharm. Bull., 23, 1481-1485 (2000) https://doi.org/10.1248/bpb.23.1481
  10. Bae E.A., Yook C.S., Oh O.J., Chang S.Y., Nohara T., and Kim D.-H., Metabolism of chiisanoside from Acanthopanax divaricatus var. albeofructus by human intestinal bacteria and its relation to some biological activides. Biol. Pharm. Bull. 24, 582-585 (2001) https://doi.org/10.1248/bpb.24.582
  11. Bae E.-A., Han M.J., Choo M.-K., Park S.-Y., and Kim D.-H., Metabolism of 20(S)- and 20(R)-ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities. Biol. Pharm. Bull., 24, 58-63 (2002)
  12. Baricevic D., Sosa S., Loggia R.D., Tubaro A., Simonovska B., Krasna A., and Zupancic A., Topical anti-inflammatory activity of Salvia officinalis L. leaves: the relevance of ursolic acid. J. Ethnopharmacol. 75, 125-132 (2001) https://doi.org/10.1016/S0378-8741(00)00396-2
  13. Bokkenheuser V.D., Shackleton H.L., and Winter J., Hydrolysis of dietary flavonoid glycosides by strains of intestinal Bacteroides from humans. Biochem. J., 248, 953-957 (1987) https://doi.org/10.1042/bj2480953
  14. Booth A.N., Murry C.W., Jones F.T., and DeEds F., The metabolic fate of rutin and quercetin in the animal body. J. Biol. Chem., 223, 251-258 (1956)
  15. Bosland M.C., McCormick D.L., Melamed J., Walden P.D., Zeleniuch-Jacquotte A., and Lumey L.H., Chemoprevention strategies for prostate cancer. Eur. J. Cancer Prev. 11, Suppl 2 S18-27 (2002)
  16. Chen Y.C., Shen S.C., Chen L.G., Lee T.J., and Yang L.L., Wogonin, baicalin, and baicalein inhibition of inducible nitric oxide synthase and cydooxygenase-2 gene expressions induced by nitric oxide synthase inhibitors and lipopolysaccharide. Biochem. Pharmacol. 61, 1417-1427 (2001) https://doi.org/10.1016/S0006-2952(01)00594-9
  17. Cheng K.-J., Krishnamurty H.G., Jones G.A., and Simpson F.J., Identification of products produced by the anaerobic degradation of naringin by Butyrivibrio sp. C3. Can. J. Microbiol., 17, 129-131 (1971) https://doi.org/10.1139/m71-022
  18. Choo M.K., Park E.K., Han M.J., and Kim D.-H., Antiallergic activity of ginseng and its ginsenosides. Planta Med. 69, 518-522 (2003) https://doi.org/10.1055/s-2003-40653
  19. Conn J.W., Rovner D.R., and Cohen E.L., Licorice induced pseudoaldosteronism, hypertentsion, hypolalemia, aldosterono-penia and supressed plasma renin activity. J. Am. Med. Ass., 205, 80-84 (1968)
  20. Corthout J., Naessens T., Apers S., and Vlietinck A.J., Quantitative determination of ginsenosides from Panax ginseng roots and ginseng preparations by thin layer chromatography-densitometry. J. Pharm. Biomed. Anal., 21, 187-192 (1999) https://doi.org/10.1016/S0731-7085(99)00109-0
  21. Dong A., Ye M., Guo H., Zheng J., and Guo D., Microbial transformation of ginsenoside Rbl by Rhizopus stolonifer and Curvulana lunata. Biotechnol. Lett. 25, 339-344 (2003) https://doi.org/10.1023/A:1022320824000
  22. Evans W.C., Trease and Evans Pharmacognosy ($15^{th}$ ed) Saunders press, 214, 289 (2002)
  23. Finney R.S.H. and Somers G.F., The anti-inflammatory activity of glycyrretinic acid and derivatives. J. Pharm. Pharmacol., 10, 613-620 (1958) https://doi.org/10.1111/j.2042-7158.1958.tb10349.x
  24. Francis G., Kerem Z., Makkar H.P., and Becker K., The biological action of saponins in animal systems: a review. Br. J. Nutr. 88, 587-605 (2002) https://doi.org/10.1079/BJN2002725
  25. Fujita H., Sakurai T., and Toyoshima S., Studies on the regulation by drugs against experimental hepatitis (1) The therapeutical effects of glycyrrhizinic acid, DL-methionine, their complex and tablets against acute injuly induced by carbon tetrachloride or D-galactosamine. Oyo Yakuri, 16, 637-645 (1978) (in japanese)
  26. Fujiwara K. and Ogihara Y., Pharmacological effects of oral saikosapnin may differ depending on conditions of the gastrointestinal tract, Life Sci., 39, 297-301 (1986) https://doi.org/10.1016/0024-3205(86)90647-8
  27. Griffiths L.A., Studies on metabolism of flavonoids. Biochem. J., 92, 173-175 (1964)
  28. Griffith L.A. and Barrow A., Metabolism of compounds in germ-free rats, Biochem. J., 130, 1161 (1972a)
  29. Griffith L.A. and Smith G.E., Metabolism of my ricetin andrelated compounds in the rat metabolite formation in vivo and by the intestinal microflora in vitro. Biochem. J. 130, 141-151 (1972b)
  30. Griffiths L.A. and Smith G.E., Metabolism of apigenin and related compound in the rat. Biochem. J. 128, 901-911 (1972c)
  31. Guo Y., Cui Y., Zhou J., and Yua P. n, Quantitative determination of ursolic acid in folium Ilicis comutae (gouguye) gathered in different and periods. Zhongguo Zhong Yao Za Zhi. 20, 591-592 (1995)
  32. Gurfinkel D.M. and Rao A.V., Determination of saponins in Legumes by direct densitometry. J. Agric. Food Chem., 50, 426-430 (2002) https://doi.org/10.1021/jf010754c
  33. Han B.H., Park M.H., Han Y.N., Woo W.S., Sankawa U., Yahara S., and Tanaka O., Deadation of ginseng saponins under mild acidic conditions. Planta Med., 44, 146-149 (1982) https://doi.org/10.1055/s-2007-971425
  34. Han Y.O., Han M.J., Park S.H., and Kim D.-H., Protective effects of kakkalide from Flos puerariae on ethanol-induced lethality and hepatic injury are dependent on its biotransformation by human intestinal microflora. J. Pharmacol. Sci. 93, 331-336 (2003) https://doi.org/10.1254/jphs.93.331
  35. Hasegawa H., Sung J.-H, Matsumiya S., and Uchiyama M., Main ginseng saponin metabolites formed by intestinal bacteria. Planta Med., 62, 453-457 (1996) https://doi.org/10.1055/s-2006-957938
  36. Hasegawa H., Lee K.S., Nagaoka T., Tezuka Y., Uchiyama M., Kadota S., and Saiki I., Pharmacokinetics of ginsenoside deglycosylated by intestinal bacteria and its transformation to biologically active fatty acid esters. Biol. Pharm. Bull. 23, 298-304 (2000) https://doi.org/10.1248/bpb.23.298
  37. Hattori M., Sakamoto T., Kobashi K., and Namba T., Metabolism of glycyrrhizin by human intestinal bacteria. Planta Med., 48, 38-42 (1983) https://doi.org/10.1055/s-2007-969875
  38. Hattori M., Shu Y.Z., Shimizu M., Hayashi T., Morita N., Kobashi K., Xu G.J., and Namba T., Metabolism of paeoniflorin and related compounds by human intestinal bacteria. Chem. Pharm. Bull., 33, 3838-3846 (1985) https://doi.org/10.1248/cpb.33.3838
  39. Hattori M., Sakamoto T., Yamagishi T., Sakamoto K., Konishi K., Kobashi K., and Namba T., Metabolism of glycyrrhizin by human intestinal bacteria flora. Isolation and characterization of human intestinal bacteria capable of metabolizing glycrhrhzin and related compounds. Chem. Pharm Bull., 33, 210-217 (1985) https://doi.org/10.1248/cpb.33.210
  40. Hayakawa J., Noda N., Yamada S., and Uno K., Studies on physical and chemical quality evaluation of crude drugs preparations. I. Analysis of Puerariae Radix and species Puerariae. Yakugaku Zasshi, 104, 50-56 (1984) https://doi.org/10.1248/yakushi1947.104.1_50
  41. Hsu H.Y., Chen Y.P., and Hong M., The Chemical Constituents of Oriental Herbs. Oriental Healing Arts Institute press, 1982, 374, 435, 480, 528, 536, 845
  42. Hu J. and Zheng Y., Metabolism of soyasapnin I by human intestinal microflora in vitro. The $225^{th}$ ACS national meeting, AGFD 88 (2003)
  43. Jost W. and Hauc H. E. K, The use of modified silica gels in TLC and HPTLC. Adv. Chromatagr. 27, 129-165 (1987)
  44. Kanaoka M., Akao T., and Kobashi K., Metabolism of ginseng saponins, ginsenosides, by human intestinal flora. J. Med. Pharm. Soc. Wakan-Yaku 11, 241-245 (1994)
  45. Kanaoka M., Akao T., and Kobashi K., Appearance of compound K, a major metabolite of ginsenoside Rbl by intestinal bacteria, in rat plasma after oral administration - measurement of compound K by enzyme immunoassay. Biol. Pharm. Bull., 21, 245-249 (1998) https://doi.org/10.1248/bpb.21.245
  46. Kanaoka M., Akao T., and Kobashi K., Metabolism of ginseng saponins, ginsenosides, by human intestinal bacteria. J. Tradit. Med., 11, 241-245 (1998)
  47. Karikura M., Miyase T., Tanizawa H., Taniyama T., Takino Y., and Hayashi T., Studies on absorption, distribution, excretion and metabolism of ginseng saponins. V. The decomposition products of ginsenoside Rb2 in the large intestine of rats. Chem. Pharm. Bull. 39, 2859-2861 (1990)
  48. Keinan-Boker L., van Der Schouw Y.Y., Grobbee D.E., and Peeters P.H., Dietary phytoestrogens and breast cancer risk. Am. J. Clin. Nutr. 79. 282-2828 (2004) https://doi.org/10.1093/ajcn/79.2.282
  49. Kim D.H., Herbal medicines are activated by intestinal microflora. Nat. Prod. Sci., 8, 35-43 (2002)
  50. Kim D.-H., Jang I.-S, Kim N.-J., and Youn W.-K., Metabolism of poncirin and naringin by human intestinal bacteria. Yakhak Hoeji, 38, 286-292 (1994)
  51. Kim D.H., Jang I.S., Lee H.K., Jung E.A., and Lee K.Y., Metabolism of glycyrrhizin and baicalin by human intestinal bacteria. Arch. Pharm. Res., 19, 292-296 (1996) https://doi.org/10.1007/BF02976243
  52. Kim D.H., Han S.B., Bae E.A., and Han M.J., Intestinal bacterial metabolism of rutin and its relation to mutagenesis. Arch. Pharm. Res., 19, 41-45 (1996) https://doi.org/10.1007/BF02976818
  53. Kim D.H., Jung E.A., Sohng I.S., Han J.A., Kim T.H., and Han M.J., Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch, Pharm. Res., 21, 17-23 (1998) https://doi.org/10.1007/BF03216747
  54. Kim D.-H., Kim N.J., Bae E.A., and Han M.J., Scientific analysis of Daekumeumja and Pyungwesan by the metabolism of hesperidin. Kor. J. Pharmacogn. 29, 136-141 (1998)
  55. Kim D.-H., Yu K.-U., Bae E.A., and Han M.J., Metabolism of puerarin and daidzin by human intestinal bacteria and their relation to in vitro cytotoxicity. Biol Pharm. Bull. 21, 628-630 (1998) https://doi.org/10.1248/bpb.21.628
  56. Kim D.-H., Yu K.W., Bae E.A., Park H.J., and Choi J.W., Metabolism of kalopanaxsaponin B an H by human intestinal bacteria and antidiabetic activity of their metabolites. Biol. Pharm. Bull., 21, 360-365 (1998) https://doi.org/10.1248/bpb.21.360
  57. Kim D.H., Lee S.W., and Han M.J., Biotransformation of glycy-rrhizin to $18\beta$-glycyrrhetinic acid 3-0-$\beta$-D-g1ucuronide by Streptococcus LJ-22, a human intestinal bacterium. Biol. Pharm. Bull., 22, 320-322 (1999) https://doi.org/10.1248/bpb.22.320
  58. Kim D.-H., Kim S.-Y., Park S.-Y., and Han M.J., Metabolism of quercitrin by human intestinal bacteria and its relation to some biological activities. Biol Pharm. Bull. 22, 749-751 (1999) https://doi.org/10.1248/bpb.22.749
  59. Kim D.H., Hong S.W., Kim B.T., Bae E.A., Park H.Y., and Han M.J., Biotransformation of glycyrrhizin by human intestinal bacteria and its relation to biological activities. Arch. Pharm. Res., 23, 172-177 (2000) https://doi.org/10.1007/BF02975509
  60. Kim D.H., Bae E.A., Han M.J., Park H.J., and Choi J.W., Metabolism of kalopanaxsaponin K by human intestinal bacteria and antirheumatoid arthritis activity of their metabolites. Biol. Pharm. Bull. 25, 68-71 (2002) https://doi.org/10.1248/bpb.25.68
  61. Kirshmanmury H.G., Cheng K.J., Janes G.A., Simpson F.J., and Watkin J.E., Identification of products produced by the anaerobic degradation of rutin and related flavonoids by Butyrivibrio sp. C3. Can. J. Microbiol. 16, 759-767 (1970) https://doi.org/10.1139/m70-129
  62. Knekt P., Kumpulainen J., Jarvinen R., Rissanen H., Heiovaara M., Reunanen A., Hakulinen T., and Aromaa A., Flavonoid intake and risk of chronic diseases. Am. J. Clin, Nutr. 76, 560-568 (2002)
  63. Kobashi K. and Akao T., Relation of intestinal bacteria to Phar-macological effects of glycosides. Bifidobacteria Microflora 16, 1-7 (1997)
  64. Kumagai A., Yano S., Otome M., and Takeuchi K., Study on the corticoid-like action of glycyrrhizinic and the mechanism of its action. Endocrinol. Jpn. 4, 12-27 (1957) https://doi.org/10.1507/endocrj1954.4.12
  65. Kuroki G. and Poulton J.E., The para-O-methylation of apigenin to acacetin by cell-free extracts of Robinia pseudoacacia L., Z. Naturforsch. 36c, 916-920 (1981)
  66. Kurita A. and Kaneda N., High-performance liquid chromatographic method for the simultaneous determination of the Campto-thecin derivative irinotecan hydrochloride, CPT-11, and its metabolites SN-38 and SN-38 glucuronide in rat plasma with a fully automated on-line solid-phase extraction system, PROSPEKT. J. Chromatogr. B Biomed. Sci. Appl. 724, 335-344 (1999) https://doi.org/10.1016/S0378-4347(98)00554-4
  67. Lee J.M., Longevity and life Preservation in Oriental Medicine (In: S.H. Choi, translated), Kyung Hee Univ. Press, Seoul, pp.153 (1996)
  68. Lee M. and Hahn D.R., Triterpenoidal saponins from the leaves of Kalopanax pictum var. chinense. Arch. Pharm. Res., 14, 124-128 (1991) https://doi.org/10.1007/BF02892016
  69. Lee S.J., Sung J.H., Lee S.J., Moon C.K., and Lee B.H., Antitumor activity of a novel ginseng saponin metabolite in human pulmonary adenocarcinoma cells resistant to cisplatin. Cancer Lett., 144, 3943 (1999) https://doi.org/10.1016/S0304-3835(99)00188-3
  70. Lee D.S., Kim Y.S., Ko C.N., Cho K.H., Bae H.S., Lee K.S., Kim J.J., Park E.K., and Kim D.H., Fecal metabolic activities of herbal components to bioactive compounds. Arch. Pharm. Res., 25, 165-169 (2002) https://doi.org/10.1007/BF02976558
  71. Li S.Y., Quantitative determination of betulinic acid in Zizyphus vulgaris by TLC-colorimetiy. Zhong Yao Tong Bao 11, 43-45 (1986)
  72. Li Y.F. and Zhang R., Reversed-phase high-performance liquid chromatography method for the simultaneous quantitation of the lactone and carboxylate forms of the novel natural product anticancer agent 10-hydroxycamptothecin in biological fluids and tissues. J. Chromatogr. B Biomed. Sci. Appl. 686, 257-265 (1996) https://doi.org/10.1016/S0378-4347(96)00222-8
  73. Li B.Q., Fu T., Dongyan Y., Mikovits J.A., Ruscetti F.W. and Wang J.M., Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry. Biochem. Biophys. Res. Commun. 276, 534-538 (2000) https://doi.org/10.1006/bbrc.2000.3485
  74. Liu C.X., Development of Chinese medicine based on pharmacology and therapeutics. J. Ethmpharmacol. 19, 119-123 (1987) https://doi.org/10.1016/0378-8741(87)90035-3
  75. Liu G., Gu F., Xu K., and Zhang L., Research on the transformation of ginsenoside Rg1 by intestinal flora. Zhongguo Zhong Yao Za Zhi 26, 188-190 (2001)
  76. Liu A.R., Fang Z.Q., and Huang X., Consideration for the study of basic theory of TCM. Zhongguo Zhone Xi Yi Jie He Za Zhi. 22, 249-254 (2002)
  77. MacDonald I.A., Mader J.A., and Bussard R.G., The role of rutin and quercitrin in stimulating flavonol glycosidase activity by cultured cell-free microbial preparation human feces and saliva. Mutation Res. 122, 95-102 (1983) https://doi.org/10.1016/0165-7992(83)90044-1
  78. MacGregor J.R., Mutagenicity studies of flavonols in vivo and in vitro. Toxic. Appl. Pharm. 48, A47 (1979)
  79. Manach C., Morand C., Texier O., Favier M.L., Aullo G., Demigne C., Regerat F., and Remesy C., Quercetin metabolites in plasma of rats fed diets containing rutin or quercetin. J. Nutr. 125, 1911-1922 (1995)
  80. Manach C., Morand C., Demigne C., Texier O., Regerat F., and Remesy C., Bioavailability of rutin and quercetin in rats. FEBS Lett. 409, 12-16 (1977) https://doi.org/10.1016/S0014-5793(97)00467-5
  81. Maugh T.H., TLC: The overlooked alternative. Science 216, 161-163 (1982) https://doi.org/10.1126/science.7063877
  82. Middleton E., Kandaswami C., and Theoharides T.C., The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Phannacological Rev. 52, 673-751 (2000)
  83. Mitsuoka T., A color atlas of anaerobic bacteria, Sobunsa, Tokyo, 322 (1980)
  84. Morton M.S., Arisaka O., Miyake N., Morgan L.D., and Evans B.A., Phytoestrogen concentrations in serum from Japanese men and women over forty years of age. J. Nutr. 132, 3168-3171 (2002) https://doi.org/10.1093/jn/131.10.3168
  85. Nakano N., Kano H., Suzuki H., Nakano N., Yano S., and Kanako M., Enzyme immunoassay of glycyrrhetic acid and glycyrrhizin 2. Measurement of plasma glycyrrhetic acid and glycyrrhizin Jpn. Pharmacol. Ther. 8, 4171-4174 (1980) (in japanese)
  86. Nohara T. and Kinjo J., Chemical constituents of Puerariae Radix. J. Tradit. Sino-Jpn Med. 13, 391-397 (1984)
  87. Oh O.J., Chang S.Y., Yook C.S., Yang K.S., Park S.Y., and Nohara T., Two 3,4-seco-lupane triterpenes from leaves of Acanthopanax divahcatus var. albeofructus. Chem. Pharm. Bull. 48, 879-881 (2000) https://doi.org/10.1248/cpb.48.879
  88. Oleszek W.A., Chromatographic determination of plant saponins. J. Chromatogr. A 967, 147-162 (2002) https://doi.org/10.1016/S0021-9673(01)01556-4
  89. Pompeo R., Flore O., Marccialis M.A., Pani A., and Loddo B., Glycyrrhizic acid inhibits virus growth and inactivates virus particles. Nature 281, 689-690 (1979) https://doi.org/10.1038/281689a0
  90. Poole C.F., Planar chromatography at the turm of the century. J. Chmmatogr. A 856, 399-427 (1999) https://doi.org/10.1016/S0021-9673(99)00430-6
  91. Poole C.F., Thin-layer chromatography: challenges and oppor-tunities. J. Chromatogr. A 1000, 963-984 (2003) https://doi.org/10.1016/S0021-9673(03)00435-7
  92. Poole C.F. and Poole S.K., Progress in densitometry for quantitation in planar chromatography. J. Chromatogr. 492, 539-584 (1989) https://doi.org/10.1016/S0378-4347(00)84479-5
  93. Poole C.F. and Dias N.C., Practitioner's guide to method development in thin-layer chromatography. J. Chromatogr. A 892, 124-142 (2000) https://doi.org/10.1016/S0021-9673(00)00162-X
  94. Prosek M., Golc-Wondra A., and Vovk I., Uncertainty in quantitative thin-layer chromatography. J. Chromatogr. Sci. 40, 598-602 (2002) https://doi.org/10.1093/chromsci/40.10.598
  95. Rechner A.R., Kuhnle G., Bremner P., Hubbard G.P., Moore K.P., and Rice-Evans C.A., The metabolic fate of dietary polyphenols in humans. Free Rad. Biol. Med. 33, 220-235 (2002) https://doi.org/10.1016/S0891-5849(02)00877-8
  96. Sano K., Sanada S., Ida Y, and Shoji J., Studies on the constituents of the stem bark of Kalopanax pictus. Chem. Pharm. Bull. 39, 865-870 (1991) https://doi.org/10.1248/cpb.39.865
  97. Shao C.J., Kasai R., Xu J.D., and Tanaka O., Saponins from roots of Kalopanax septemlobus (Thunb.) Koidz., Ciqiu: Structures of kalopanaxsaponins C, D, E and F. Chem. Pharm. Bull. 37, 311-314 (1989) https://doi.org/10.1248/cpb.37.311
  98. Shibata S., Kitagawa I., and Fujimoto H., The chemical studies on oriental plant drugs. XV. On the constituents of Bupleurum spp. (2). The structure of saikogenin a, a sapogenin of Bupleurum falcatum L., Chem. Pharm. Bull. 14, 1023-1033 (1966) https://doi.org/10.1248/cpb.14.1023
  99. Shibata S., Tanka O., Ando T., Sado M., Tsushima S., and Ohasawa T., Chemical studies on oriental plant dmgs. XIV. Protopanaxadiol, a genuine sapogenin of ginseng saponins. Chem. Pharm. Bull. 14, 595-600 (1966) https://doi.org/10.1248/cpb.14.595
  100. Shim S.B., Kim N.J., and Kim D.H., $\beta$-Glucuronidase inhibitory activity and hepatoprotective effect of 18-glycyrrhetinic acid from the rhizomes of Glycyrrhiza uralensis. Planta Med. 65, 40-43 (2000) https://doi.org/10.1055/s-2000-11109
  101. Shimizu K., Amagaya S., and Ogihara Y., Structural transformationof saikosaponins by gastric juice and intestinal flora. J.Pharmacobio-Dyn. 8, 718-725 (1985) https://doi.org/10.1248/bpb1978.8.718
  102. Stoewsand G.S., Anderson J.L., Boyd J.N., and Harzdine G., Quercetin: A Mutagen not a carcinogen in fischer rats. J. Toxic. Environ. Health. 14, 105-114 (1984) https://doi.org/10.1080/15287398409530565
  103. Tamura G., Gold C., Ferro-Luzzi A., and Ames B.N., Fecalase-A model for activation of dietary glycosides to mutagens by intestinal flora. Proc. Natl. Acad. Sci. in USA, 77, 4981-4965 (1980) https://doi.org/10.1073/pnas.77.8.4961
  104. Tangri K.K., Seth P.K., Parmar S.S., and Bhargava K.P., Biochemical study of anti-inflammatory and antiarthtitic properties of glycyrretic acid. Biochem. Pharmacol., 14, 1277-1281 (1965) https://doi.org/10.1016/0006-2952(65)90305-9
  105. Tsai T.H., Analytical approaches for traditional chinese medicines exhibiting antineoplastic activity. J. Chromatogr. B Biomed Sci. Appl. 764, 27-48 (2001) https://doi.org/10.1016/S0378-4347(01)00277-8
  106. Wakabayashi C., Hasegawa H., Murata J., and Saiki I., In vivo antimetastatic action of ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol. Res. 9, 411-417 (1998)
  107. Winter J., Moore L.H.. Dowell V.R., and Bokkenheuser V.D., C-ring cleavage of flavonoids by human intestinal bacteria. Appl. Environ. Microbiol. 55, 1203-1208 (1989)
  108. Wu J.Y., Gardner B.H., Murphy C.I., Seals J.R., Kensil C.R., Recchia J., Beltz G.A., Newman G.W., and Newman M.J., Saponin adjuvant enhancement of antigen-specific immune responses to an experimental HIV-l vaccine. J. Immunol. 148, 1519-1525 (1992)
  109. Wu J., Lin L., and Cha F. u, Ultrasound-assisted extraction of ginseng saponins from ginseng roots and cultured ginseng cells. Ultrasonics Sonochemistry 8, 347-352 (2001) https://doi.org/10.1016/S1350-4177(01)00066-9
  110. Yen M.-H., Lin C.-C, Chuang C.-H., and Liu S.-Y., Evaluation of root quality of Bupleurum species by TLC scanner and the liver protective effects of Xiao-chai-hu-tang prepared using three different Bupleurum species. J. Ethnopharmacol. 34, 155-165 (1991) https://doi.org/10.1016/0378-8741(91)90033-A
  111. Yip Y.Y., Lau C.N.B., But P.P.H., and Kong Y.C., Quantitative analysis of ginsenosides in fresh Panax ginseng. Am. J. Chinese Med. 8, 77-88 (1985)
  112. Youn W.K., Kim D.H., Kim N.J., and Hong N.D., Biological active components of fruits of Poncirus trifoliata. Yakhak Hoeji 36, 548-555 (1992)
  113. Zhang C., Yu H., Bao Y., An L., and Jin F., Purification and characterization of ginsenoside-beta-glucosidase from ginseng Chem. Pharm. Bull. 49, 795-798 (2001) https://doi.org/10.1248/cpb.49.795
  114. Zheng C., Ji L., Chen G., Chen J., and Tang Z., Quality standard of tanre kesou granules. Zhongguo Zhong Yao Za Zhi 21, 348-350 (1996)
  115. Zhu Y.P., Chinese Materia Medica,publishers, 1-43 (1988)