DOI QR코드

DOI QR Code

The Organization of Nanoporous Structure Using Controlled Micelle Size from MPEG-b-PDLLA Block Copolymers

  • Published : 2004.03.20

Abstract

Selected MPEG-b-PDLLA block copolymers have been synthesized by ring-opening polymerization with systematic variation of the chain lengths of the resident hydrophilic and hydrophobic blocks. The size and shape of the micelles that spontaneously form in solution are then controlled by the characteristics of the block copolymer template. All the materials prepared in this study showed the tunable pore size of 20-80 ${\AA}$ with the increase of hydrophobic chain lengths and up to 660 $m^2$/g of specific surface area. The formation mechanism of these nanoporous structures obtained by controlling the micelle size has been confirmed using both liquid and solid state $^{13}C\;and\;^{29}Si$ NMR techniques. This work verifies the formation mechanism of nanoporous structures in which the pore size and wall thickness are closely dependent on the size of hydrophobic cores and hydrophilic shells of the block copolymer templates.

Keywords

References

  1. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck,J. S. Nature 1992, 359, 710. https://doi.org/10.1038/359710a0
  2. Yang, H.; Coombs, N.; Ozin, G. A. Nature 1997, 386, 692. https://doi.org/10.1038/386692a0
  3. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.;Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548. https://doi.org/10.1126/science.279.5350.548
  4. Kim, S. S.; Zhang, W.; Pinnavia, T. J. Science 1998, 282, 1302. https://doi.org/10.1126/science.282.5392.1302
  5. Braun, P.; Osenar, V. P.; Stupp, S. I. Nature 1996, 380, 325. https://doi.org/10.1038/380325a0
  6. Liu, J.; Shin, Y.; Nie, Z.; Chang, J. H.; Wang, L. Q.; Fryxell, G. E.;Samuels, W. D.; Exarhos, G. J. J. Phys. Chem. A 2000, 104, 8328. https://doi.org/10.1021/jp0009812
  7. Goltner, C. G.; Antonietti, M. Adv. Mater. 1997, 9, 431. https://doi.org/10.1002/adma.19970090516
  8. Huo, Q.; Margolese, D. I.; Stucky, G. D. Chem. Mater. 1996, 8,1147. https://doi.org/10.1021/cm960137h
  9. Mercier, L.; Pinnavia, T. J. Chem. Mater. 2000, 12, 188. https://doi.org/10.1021/cm990532i
  10. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am.Chem. Soc. 1998, 120, 6024. https://doi.org/10.1021/ja974025i
  11. Monnier, A.; Schuth, F.; Huo, Q.; Kumar, D.; Margolese, D.;Maxwell, R. S.; Stucky, G. D.; Krishnamurty, M.; Petroff, P.;Firouzi, A.; Janicke, M.; Chmelka, B. F. Science 1993, 261, 1299. https://doi.org/10.1126/science.261.5126.1299
  12. Steel, A.; Carr, S. W.; Anderson, M. W. J. Chem. Soc., Chem.Commun. 1994, 157.
  13. Chen, C. Y.; Burkett, S. L.; Li, H. X.; Davis, M. E. MicroporousMater. 1993, 2, 27. https://doi.org/10.1016/0927-6513(93)80059-4
  14. Bates, F. S.; Fredrickson, G. H. Physics Today 1999, February, 32.
  15. Jenekhe, S. A.; Chen, X. L. Science 1999, 283, 372. https://doi.org/10.1126/science.283.5400.372
  16. Chang, J. H.; Jeong, Y. H.; Shin, Y. K. Bull. Korean Chem. Soc.2003, 24, 119. https://doi.org/10.5012/bkcs.2003.24.1.119
  17. Shen, H.; Eisenberg, A. J. Phys. Chem. B 1999, 103, 9473. https://doi.org/10.1021/jp991365c
  18. Goltner, C.; Henke, G. S.; Weissenberger, M. C.; Antonietti, M.Angew. Chem. Int. Ed. 1998, 37, 613. https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<613::AID-ANIE613>3.0.CO;2-G
  19. Yang, J. H.; Lee, S. Y.; Han, Y. S.; Park, K. C.; Choy, J. H. Bull.Korean Chem. Soc. 2003, 24, 499. https://doi.org/10.1007/s11814-007-0087-6
  20. Templin, M.; Franck, A.; Chesne, A. D.; Leist, H.; Zhang, Y.;Ulrich, R.; Schadler, V.; Wiesner, U. Science 1997, 278, 1795. https://doi.org/10.1126/science.278.5344.1795
  21. Finnefrock, A. C.; Ulrich, R. A.; Chesne, D.; Honeker, C. C.;Schumacher, K.; Unger, K. K.; Gruner, S. M.; Wiesner, U. Angew.Chem. Int. Ed. 2001, 40, 1207. https://doi.org/10.1002/1521-3773(20010401)40:7<1207::AID-ANIE1207>3.0.CO;2-S
  22. Reley, T.; Stolinik, S.; Heald, C. R.; Xiong, C. D.; Garnett, M. C.;Illum, L.; Davis, S. S.; Purkiss, S. C.; Barlow, R. J.; Gellert, P. R.Langmuir 2001, 17, 3168. https://doi.org/10.1021/la001226i
  23. Raman, N. K.; Anderson, M. T.; Brinker, C. J. Chem. Mater. 1996,8, 1682. https://doi.org/10.1021/cm960138+

Cited by

  1. Crystallization ability of poly(lactic acid) block segments in templating poly(ethylene oxide-b-lactic acid) diblock copolymers affects the resulting structures of mesoporous silicas vol.5, pp.29, 2015, https://doi.org/10.1039/C5RA01096A
  2. Sustained Drug Release on Temperature-responsive Polymer Hybrid Nanoporous Silica Composites vol.25, pp.8, 2004, https://doi.org/10.5012/bkcs.2004.25.8.1257