DOI QR코드

DOI QR Code

Functionalization of Shortened SWCNTs Using Esterification

  • Kim, Wan-Joong (Electronic Device Group, Korea Research Institute of Standards and Science (KRISS), Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kang, Sung-Oong (Electronic Device Group, Korea Research Institute of Standards and Science (KRISS)) ;
  • Ah, Chil-Seong (Electronic Device Group, Korea Research Institute of Standards and Science (KRISS)) ;
  • Lee, Yong-Won (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Ha, Dong-Han (Electronic Device Group, Korea Research Institute of Standards and Science (KRISS)) ;
  • Choi, In-Sung S. (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Yun, Wan-Soo (Electronic Device Group, Korea Research Institute of Standards and Science (KRISS))
  • Published : 2004.09.20

Abstract

Keywords

References

  1. Yakobson, B. I.; Smalley, R. E. Am. Sci. 1997, 85, 324.
  2. Ajayan, P. M. Chem. Rev. 1999, 99, 1787. https://doi.org/10.1021/cr970102g
  3. Collins, P. G.; Arnold, M. S.; Avouris, P. Science 2001, 292,706. https://doi.org/10.1126/science.1058782
  4. de Heer, W. A.; Chatelain, A.; Ugarte, D. Science 1995, 270,1179. https://doi.org/10.1126/science.270.5239.1179
  5. Kong, J.; Franklin, N. R.; Zhou, C. W.; Chapline, M. G.; Peng, S.;Cho, K.; Dai, H. Science 2000, 287, 622. https://doi.org/10.1126/science.287.5453.622
  6. Star, A.; Gabriel, J.-C. P.; Bradley, K.; Gruner, G. Nano Lett. 2003,3, 459. https://doi.org/10.1021/nl0340172
  7. Chen, J.; Rao, A. M.; Lyuksyutov, S.; Itkis, M. E.; Hamon, M. A.;Hu, H.; Cohn, R. W.; Eklund, P. C.; Colbert, D. T.; Smalley, R. E.;Haddon, R. C. J. Phys. Chem. B 2001, 105, 2525. https://doi.org/10.1021/jp002596i
  8. Chen, J.; Hamon, M. A.; Hu, H.; Chen, Y.; Rao, A. M.; Eklund, P.C.; Haddon, R. C. Science 1998, 282, 95. https://doi.org/10.1126/science.282.5386.95
  9. Sun, Y.-P.; Huang, W.; Lin, Y.; Fu, K.; Kitaygorodskiy, A.; Riddle,L. A.; Yu, J.; Carroll, D. L. Chem. Mater. 2001, 13, 2864. https://doi.org/10.1021/cm010069l
  10. Fu, K.; Huang, W.; Lin, Y.; Riddle, L. A.; Carroll, D. L.; Sun, Y.-P.Nano Lett. 2001, 1, 439. https://doi.org/10.1021/nl010040g
  11. Mickelson, E. T.; Huffman, C. B.; Rinzler, A. G.; Smalley, R. E.;Hauge, R. H.; Margrave, J. L. Chem. Phys. Lett. 1998, 296, 188. https://doi.org/10.1016/S0009-2614(98)01026-4

Cited by

  1. SAC 305 solder paste with carbon nanotubes – part I: investigation of the influence of the carbon nanotubes on the SAC solder paste properties vol.24, pp.4, 2012, https://doi.org/10.1108/09540911211262557
  2. Characterization of a tamoxifen-tethered single-walled carbon nanotube conjugate by using NMR spectroscopy vol.404, pp.3, 2012, https://doi.org/10.1007/s00216-012-6181-6
  3. Preparation and properties of sulfonated poly(arylene ether sulfone)/hydrophilic oligomer-g-CNT composite membranes for PEMFC vol.21, pp.10, 2013, https://doi.org/10.1007/s13233-013-1136-0
  4. Improved Strength and Toughness of Carbon Woven Fabric Composites with Functionalized MWCNTs vol.7, pp.6, 2014, https://doi.org/10.3390/ma7064640
  5. Improving Fatigue Performance of GFRP Composite Using Carbon Nanotubes vol.3, pp.1, 2015, https://doi.org/10.3390/fib3010013
  6. A comparative study on effect of metformin and metformin-conjugated nanotubes on blood glucose homeostasis in diabetic rats vol.40, pp.3, 2015, https://doi.org/10.1007/s13318-014-0213-x
  7. Interlaminar Fracture Toughness of CFRP Laminates Incorporating Multi-Walled Carbon Nanotubes vol.7, pp.6, 2015, https://doi.org/10.3390/polym7061020
  8. Improving Impact Resistance of Polymer Concrete Using CNTs vol.10, pp.4, 2016, https://doi.org/10.1007/s40069-016-0165-4
  9. Improving shear strength of bolted joints in pultruded glass fiber reinforced polymer composites using carbon nanotubes vol.36, pp.13, 2017, https://doi.org/10.1177/0731684417697827
  10. Modifying the sorption properties of multi-walled carbon nanotubes via covalent functionalization vol.134, pp.9, 2009, https://doi.org/10.1039/b823316k
  11. Formation of Carbon Nanotube/Glucose-Carrying Polymer Hybrids by Surface-Initiated, Atom Transfer Radical Polymerization vol.13, pp.4, 2005, https://doi.org/10.1007/bf03218466
  12. On the Free Radical Scavenging Capability of Carboxylated Single-Walled Carbon Nanotubes vol.114, pp.14, 2004, https://doi.org/10.1021/jp100065t
  13. High grafting strength from chemically bonded 2D layered material onto carbon microfibres for reinforced composites and ultra-long flexible cable electronic devices vol.24, pp.None, 2004, https://doi.org/10.1016/j.mtcomm.2020.100994
  14. Pultruded GFRP Reinforcing Bars Using Nanomodified Vinyl Ester vol.13, pp.24, 2004, https://doi.org/10.3390/ma13245710
  15. Fabrication and Thermo-Electro and Mechanical Properties Evaluation of Helical Multiwall Carbon Nanotube-Carbon Fiber/Epoxy Composite Laminates vol.13, pp.9, 2004, https://doi.org/10.3390/polym13091437