Journal of the Korean Chemical Society 2004, Vol. 48. No. 5 Printed in the Republic of Korea

단 신

DFT-GIAO 계산에 의한 Indolenium Squaraine 염료의 형태분석

김신일 · 김동희* 군산대학교 자연과학대학 과학기술학부 화학전공 (2004. 7. 19 접수)

The Conformational Analysis of an Indolenium Squaraine Dye by DFT-GIAO Calculation

Shin-il Kim and Dong Hee Kim*

Department of Chemistry, Kunsan National University, Kunsan 573-701, Korea (Received July 19, 2004)

주제어: Squaraine, DFT-GIAO, NMR 화학적 이동 Keywords: Squaraine, DFT-GIAO, NMR Chemical Shift

1980년대까지만 해도 NMR 화학적 이동의 순 이론 적(ab initio) 계산은 단지 원리적으로만 가능한 것으로 여겨 왔으나 그 동안 이론적 기법들이 크게 개선되고¹⁸ 컴퓨터 하드웨어(hardware)의 발전으로 큰 분자에까지 더욱디 정확한 자기적 성질을 계산할 수 있게 되었다. 현재 계산한 ¹⁵C와 ¹H 화학적 이동 값은 실험값에서 얻 은 피크(peak)를 지정(assignment)할 수 있을 만큼 큰 정확도를 가지고 있다.⁹¹¹ NMR 화학적 이동은 분자의 세밀한 기하학적 구조와 전자구조에 아주 민감하게 의 존하기 때문에 NMR 화학적 이동은 분자구조를 밝히 는 유용한 수단이 되고 있다. 특히, 계산의 큰 장점은 이면각(dihedral angle) 등 분자구조를 자유롭게 변화 시 킬 수 있기 때문에 계산한 NMR 화학적 파라미터와 NMR 화학적 이동을 실험값과 비교하면 분자 구조에 대한 정보를 얻을 수 있다.¹²

Squaraine 염료는 광유도 광수용체(photoinductive photoreceptor),¹³ 광학기록매체(optical recording media),¹⁴ 기체감응장치(gas sensitive device),¹⁵ 생체에 대한 형광 탐침(fluorescent probe)¹⁶에 대한 잠재적 이용가능성 때 문에 많은 관심을 불러일으키고 있다. squaraine 염료는 발색단 간의 강한 분자간 상호작용으로 인한 낮은 용해 도는 이들 염료에 대한 기본적이고 실질적인 연구에 제 한 요인이 되었으나 Tong L. 등은 최근 용해도가 큰 indolenium squaraine 염료를 합성하고 N-알킬기의 성 질과 용해도 사이의 상관관계를 보고 하였다. [18] 또한 이들은 이들 염료의 여러 형태 이성질체 중 실제로 존 재 기능한 구조를 알아보기 위하여 모델화합불로서 bis (1-isopropyl-2,3,3-trimethylindolenium-2-ylidene)squaraine 를 택하여 분자역학(MM+)과 반경험적(AM1) 양자화학 계산을 행하고 그 계산 결과를 확인하기 위하여 NMR 분광학적 방법을 이용하였다. 이 과정에서 이들은 ¹⁴C NMR 스펙트럼을 해석할 때 AMI계산에서 얻은 원자 전하밀도(atomic charge density)를 이용하였다.¹⁹ 그러 나 NMR 화학적 이동은 많은 변수(결합길이, 결합각, 유도효과, 공명효과, 정전기장)에 의하여 영향을 받는다. 그러므로 NMR 실험 데이터를 계산 값과 비교하여 구 조에 대한 세밀한 정보를 얻기 위해서는 순이론적(ab initio) 방법 혹은 밀도 범함수 이론(DFT) 수준의 NMR 화학적 이동의 계산이 필수적이다. 따라서 본 연구에서 는 밀도 범함수(DFT)계산을 통하여 이 모델 염료분자 에 대한 정확한 분자 구조에 대한 정보를 얻고자 한다.

계산방법

이론적으로 bis(1-isopropy1-2,3,3-trimethylindolenium-2ylidene)squaraine의 형태 이성질체는 indolenium과 squaraine

Fig. 1. The six stable conformational isomers of the squarylium dye.

부분 사이의 π전자들의 비편재화로 인하여 자유로운 회 전이 어렵기 때문에 Fig. 1과 같이 적어도 6개의 안성 한 구조를 가질 것으로 생각된다. 그러나 ¹⁵C NMR 실 험에서 카보닐 탄소에 대한 피크가 하나만 인어졌다.¹⁶ 이는 분자 내에서 두 카보닐 탄소의 환경이 정확히 일 치함을 의미하며 용액에서 Fig. 1에 있는 6개 구조 중 에서 구조 II로 존재할 것으로 예상할 수 있다. 이를 접 증하기 위하여 여섯 가지 형태 이성질체 중 구조 II와 더불어 에너지와 구조면에서 구조 II와 비슷한 구조 1 에 대해서도 계산을 병행하였다.

모든 계산은 Gaussian 98 프로그램³¹을 이용하여 수 행하였으며 밀도 법함수(DFT) 방법 중 B3LYP 혼성 함 수를⁷¹를 이용하여 최적화 구조를 얻었다. 이때 사용한 기지집합은 6-31G*를 사용하였다. 이정도면 적은 비용 으로. 좋은 구조를 얻을 수 있다. 이 최적화 구조에 대 한 NMR 가리움 텐서(shielding tensor)는 밀도 범함수 이론 중 BLYP²², B3LYP, B3PW91^{21,22} 수준에서 NMR 화학적 이동 계산에서 정확성을 검증 받고 있는 GIAO (Gauge Including Atomic Orbitals)방법²⁵을 이용하여 계산하였다. 이때 기저 집합(basis set)은 6-31G**를 사 용하였다. 본 연구에서 제시하는 계산한 NMR 화학적 이동 값은 실험에서와 마찬가지로 표준물질로 일반적 으로 사용되는 TMS(tetramethylsilane)와의 상대적인 값이다.

결과 및 고찰

구조

 Fig. 1은 모델 염료분자의 형태 이성질체 중 구조 II

 를 탄소 골격반을 사용하여 나타낸 것이다. Table 1은

 구조 1 과 II에 대하여 B3LYP/6-31G*를 이용하여 계산

 한 결합길이. 결합각 그리고 이면각들을 정리한 것을

 보인 것이다. 구조 I과 II에서 R(Cg-Ch)과 R(Ch-Cg)는 각

 다 1.385Å과 1.401Å으로 같다. R(Ch-Cg)는 구조 I과 II

 에서 1.474Å으로 같고 R(Ch-Cg)는 구조 I에서는 1.478

 Å이고 구조 II에서는 1.479Å으로 I과 IF구조에서 R(Cg-Cg)

Fig. 2. Structure and atom numbering scheme of the squarylium dye.

Journal of the Korean Chemical Society

Table 1. Geometrical parameters calculated by the B3LYP/6-31G* method

Parameter	I	II
B(N-Cg)	1.380	1.380
$B(C_g - C_h)$	1.385	1.385
$B(C_h-C_i)$	1.401	1.401
$B(C_i-C_j)$	1.474	1.474
$B(C_j - O)$	1.227	1.233
$B(\mathbf{C}_{i} \cdot \mathbf{C}_{j})$	1.478	1.479
$B(C_j - O)$	1.239	1.233
$A(N-C_g-C_h)$	122.56	122.80
$A(C_{g}-C_{h}-C_{i})$	133.11	132.26
$A(C_h-C_i-C_j)$	124.89	12 4.34
$A(\mathbf{C_{h}} - \mathbf{C_{j}} - \mathbf{C_{j'}})$	145.28	145.80
$A(C_i-C_j-O)$	134.84	132.32
$A(C_i - C_j - O)$	134.99	132.32
$A(C_i-C_j-O)$	135.00	137.53
$A(C_{1}-C_{1}-O)$	134.84	137.53
$D(N-C_g-C_h-C_i)$	179.99	-179.99
$D(C_g-C_h-C_j-C_j)$	179.99	179.98
$D(C_h-C_j-C_j-O)$	0.00	0.02
$D(C_g-C_h-C_f-C_f)$	-0.02	0.00
$D(\mathbf{C}_{h}-\mathbf{C}_{j}-\mathbf{C}_{j}-\mathbf{O})$	-0.01	-0.01

Distances in angstroms and angles in degrees.

C₁)이 *R*(C₁-C₁)보다 약간씩 길게 계산되었다. 그렇지만 모두 탄소-탄소 단일 결합과 이중 결합의 중간 값임을 알 수 있다. 이러한 계산 결과는 이 모델 염료분자의 π 전자들이 비 편재화 되어 있음을 말해준다. 결합길이에 서 구조 I과 II 사이에 큰 변화가 없으나 구조 II에서는 $R(C_{J}-O)$ 과 $R(C_{J}-O)$ 가 1.233Å으로 정확히 같은 반면에 구조 I에서는 $R(C_{J}-O)$ 가 $R(C_{J}-O)$ 보다 0.012Å 길다. 결 합각의 경우는 구조 II에서는 $A(C_{i}-C_{J}-O)$ 는 $A(C_{i}-C_{J}-O)$ 와 $A(C_{i}-C_{J}-O)$ 는 $A(C_{i}-C_{J}-O)$ 와 정확히 일치함으로써 이 구조가 완전 C₂ 대칭구조임을 확인할 수 있다. 그 외의 결합각에서는 구조 I과 크게 다르지 않다. 특히, 이면각 에서는 두 구조가 0.1°이내에서 일치하고 있다.

¹³C NMR 화학적 이동 계산

Table 2는 구조 II에 대하여 계산한 ¹³C NMR 화학적 이동을 정리하여 나타낸 것이다. 일반적으로 이중 결합 이나 삼중결합과 같은 π전자를 포함하는 원자 또는 산 소나 질소원자와 같은 전기음성도가 큰 원자와 결합한 원자의 계산한 NMR 화학적 이동은 실험값과의 편차 가 크다. 이와 같은 사실은 Table 2에서 보는 바와 같 이 혼성함수를 사용한 B3LYP와 B3PW91 뿐 아니라 BLYP 계산방법에서도 C_k, C_m 및 C_n에 대한 ¹³C NMR 화학적 이동의 계산 값이 그 밖의 다른 탄소원자들의 것 보다 실험값과 아주 잘 일치하는 것으로부터 확인 할 수 있다. indolenium에 있는 벤젠고리내의 여섯 개 의 탄소원자(a-f)의 계산 값은 모두 실험치보다 모두 작 게 계산되었다. 그러나 π전자를 포함하고 있음에도 불

Table 2. ¹³C NMR chemical shifts of II calculated by the DFT-GIAO/6-31G** method^a

	BLYP	B3LYP	B3PW91	Qale	Exp ^c .
а	100.79	103.64	104.54	-0.1567	111.71
b	118.63	122.00	122.91	-0.1045	127.13
с	114.66	117.56	118.48	-0.1543	122.23
d	114.86	118.31	119.35	-0.0793	123.16
e	134.84	138.17	138.74	0.0551	142.75
f	136.11	138.12	138.45	-0.1238	141.02
g	155.34	162.39	162.58	0.1423	178.99
h	89.18	89.79	90.75	-0.2299	86.84
i	183.05	186.11	186.95	-0.1102	170.18
j	167.59	172.42	173.07	0.2246	182.27
k	19.37	19.06	19.14	-0.2315	19.25
I	51.29	49.81	49.67	0.0317	47.67
m	29.37	28.91	28.96	-0.2038	27.05
n	53.91	52.40	52.59	0.0223	48.97

^aRelative to TMS(ppm).

^bThe atom charge densities are based on AM1 calculations. Reference is in ref. 19. ^cRef. 19

2004, Vol. 48, No. 5

김신일・김동희

Table 3. $^{13}\mathrm{C}$ NMR chemical shifts of I calculated by the DFT-GIAO/6-31G** method*

	BLYP	B3LYP	B3PW91	Exp ^b .
а	100.42	103.91	104.60	111.71
b	118.73	122.22	122.99	127.13
c	113.65	117.14	118.27	122.23
d	114.84	118.33	119.43	123.16
e	134.75	138.24	138.62	142.75
f	133.80	137.29	138.40	141.02
g	159.78	163.28	162.86	178.99
h	86.46	89.95	90.63	86.84
i	181.91	185.40	187.21	170.18
j	171.43	174.92	175.42	182.27
(j')	166.31	(169.81)	(170.33)	
k	15.71	19.20	19.19	19.25
1	45.97	49.46	49.49	47.67
m	25.41	28.90	29.01	27.05
n	49.09	52.59	52.73	48.97

*Relative to TMS (ppm). ^bRef. 19.

구하고 대체로 모든 계산에서 실험값을 잘 표현하고 있 다. 다만 BLYP 계산의 경우는 혼성함수를 사용한 B3LYP와 B3PW91의 계산 값에 비하여 2-3 ppm 정도 작게 계산되었으나 B3LYP와 B3PW91간의 계산값은 l ppm 내에서 서로 잘 일치하고 있으며 BLYP 계산값 보다 실험값에 근접함을 알 수 있다.

한편, C₈, C_i 및 C_i 원자의 경우는 BLYP, B3LYP 및 B3PW91 계산값 모두가 실험값과 큰 차이를 보이고 있 다. 특히 C₈ 원자의 ¹³C NMR 화학적 이동은 측정값과 아주 큰 편차를 나타내고 있는데 혼성함수를 사용한 B3LYP와 B3PW91 계산에서는 각각 16.6 ppm과 16.41 ppm 만큼 실험값보다 작게 계산 되었으나 BLYP 계산값은 23.65 ppm으로 더 큰 차이를 보이고 있다.

Tong L. 등은 이 모델 염료의 ¹⁵C NMR 스펙트럼을 해석할 때 AM1계산에서 얻은(*Table* 2) 원자전하밀도 (atomic charge density)를 이용하였다.¹⁹ 즉 이들은 원자 전하밀도의 순서가 C₁<C₂<C₁이기 때문에 NMR 화학적 이동은 그 역의 순서일 것으로 해석하였다. 그러나 NMR 화학적 이동은 많은 변수 즉, 결합길이, 결합각, 유도효 과, 공명효과, 정전기장에 의하여 영향을 받기 때문에 이는 단순히 원자 전하밀도만으로 NMR 스펙트럼을 해 석한 오류일 가능성이 높다. 이와 같은 계산값과 측정 값의 큰 차이를 계산 방법론(methodology)의 부정확성 의 탓으로 돌릴 수도 있으나 이 연구에서 벤젠고리에 포함된 탄소원자들의 계산한 NMR 화학적 이동이 실 험값을 충분히 설명할 수 있음에서도 그 이유를 찾을 수 있다. 더불어 Pulay 등은 본 연구에서 사용한 수준 에서 계산한 NMR 화학적 이동값이 D-O와 같은 국성 용매 하에서 측정한 여러 국성분자에 대한 NMR 화학 적 이동값을 잘 설명할 수 있음을 보고하였다.^{9,10} 따라 서 계산 오차에 의하여 C,와 C₁값의 순서가 바뀔 가능 성이 있다손 치더라도 본 계산대로라면 C에 해당하는 실험값은 182.27 ppm으로 C,와 C₂에 대한 값은 각 각 178.99 ppm과 170.18 ppm으로 수정되어야 옯을 것 같다.

계산한 NMR 화학적 이동을 실험값과 비교함으로써 분자 구조에 대한 정보를 얻을 수 있다. 만일 구조 II 대신 다른 형태 이성질체가 용액 중에 존재한다면 ¹⁵℃ NMR 실험에서 과연 카보닐 탄소에 대한 피크 두개가 구분할 수 있을 만큼 뚜렷한 차이를 보일까? 이를 알아 보기 위하여 구조 II 와 이면각들이 아주 유사한 구조 I 에 대하여 기저집합 6-31G**를 이용하여 NMR 화학 적 이동을 계산하여 *Table* 3에 실었다. *Table* 3으로부 터 거의 모든 값들은 구조 II와 1 ppm 이내에서 잘 일 치하고 있음을 알 수 있다. 오로지 카보닐 탄소만이 B3PW91 계산 결과에서 Ç는 175.42 ppm, Ç는 170.33 ppm 으로 C₆에 대한 피크가 5.09 ppm 크게 계산 되었다. 다 른 두 계산, B3LYP와 BLYP에서도 이와 유사한 경향

Journal of the Korean Chemical Society

을 나타내고 있다. 그러므로 만일 이 모델 염료가 여러 형태 이성질체 중 구조 I로 존재 한다면 ¹³C NMR 실 험에서 2개의 피크, C₃와 C₃가 약 5 ppm 간격으로 분 리되어 나타날 것으로 예상할 수 있다. 그러나 ¹³C NMR 실험에서 카보닐 피크가 하나만 관찰되었기 때문에¹⁹ 이 모델 염료분자는 용액 상에서 유일하게 구조 II(*Table* 1 에서 제시한 구조 파라미터와 유사한 구조)로 존재함에 틀림없다.

결 론

계산한 NMR 화학적 파라미터와 NMR 화학적 이동 을 실험값과 비교하면 분자 구조에 대한 정보를 얻을 수 있다. 본 연구에서 계산한 모델화합물, bis(1-isopropy)-2,3,3-trimethylindolenium-2-ylidene)squaraine의 형태 이성 질체 중 구조 II는 B3LYP/6-31G* 수준에서 최적화 구 조를 구한 결과 정확히 C. 대칭구조임을 알 수 있었다. 또한, 구조 I과 II에 대하여 DFT-GIAO/6-31G** 방법 으로 ¹³C NMR 화학적 이동을 계산하였다. BLYP/6-31G** 계산값은 혼성함수를 사용한 B3LYP/6-31G**와 B3PW91/6-31G**의 계산값 보다 2-3 ppm 정도 작게 계산되었으나 B3LYP/6-31G**와 B3PW91/6-31G**간 의 계산값의 차이는 약 l ppm 정도로 서로 비슷하였으 며 BLYP/6-31G** 계산값 보다 더 실험값에 근접하지 만 위 세 가지 방법 모두 실험값을 해석하기에 충분하 다. 다만 Cg, Ci 및 Cj 원자의 경우만 계산값과 실험값 의 차이가 큰데 이는 ¹⁰C NMR 실험 결과를 분자구조 와 관련지어 해석할 때 원자전하밀도에만 의존하여 해 석한 오류일 가능성을 배제할 수 없다. C. 대칭구조를 가진 구조 II에 대하여 계산한 ^EC NMR 화학적 이동 에서 두 카보닐 탄소에 대한 NMR 화학적 이동값이 정 확히 같다는 것은 ^LC NMR 실험에서 카보닐 탄소에 대한 피크가 단 하나만 관찰된 사실과 잘 부합한다. 이 와 같은 계산 결과는 이 모델 염료분자가 6개의 안정한 구조 중 오직 II의 형태로 존재하고 있음을 말해준다.

이 논문은 2002년도 군산대학교 교수장기해외연수경 비의 지원에 의하여 연구되었으며, 이에 감사드립니다.

인용문헌

1. Ribas Prado, F.; Giessner-Prettre, C.; Daudey, J.P.; Pull-

man, A.; Young, F.; Hinton, J.F.; Harpool, D. J. Magn. Res. 1980, 37, 43.

- Fukui, H.; Miura, K.; Yamazaki, H.; Nosaka, T. J. Chem. Phys. 1985, 82, 1410.
- Hansen, A.E.: Bouman, T.D. J. Chem. Phys. 1985, 82, 5035.
- Vauthier, E.; Comeau, M.; Odiot, S.; Fliszar, S. Can. J. Chem. 1988, 66, 1781.
- Wolinski, K.; Hinton, J.F.; Pulay, P. J. Am. Chem. Soc. 1990, 112, 8251.
- Jiao, D.: Barfield, M.: Hruby, J. M. J. Am. Chem. Soc. 1993, 115, 10883.
- de Dios, A. C.: Oldfield, E. J. Am. Chem. Soc. 1994, 116, 5307.
- Pearson, J. G.; Wang, J. F.; Markley, J. L.; Le, H. B.: Oldfield, E. J. Am. Chem. Soc. 1995, 117, 8823.
- Wang, B.: Fleischer, U.: Hinton, J. F.; Pulay, P. J. Comput. Chem. 2001, 22, 1887.
- Wang, B.; Hinton, J. F.; Pulay, P. J. Comput. Chem. 2002, 23, 429.
- 11. (a) Kim, D. H.; Eun, H. M.; Choi, H. S. Bull. Korean Chem. Soc. 2000, 21, 148. (b) Kim, D. H.; Pang, S. K.; Lee, S. H.; Yu, S. C.; Choi, H. S.; Han, O. H. Bull. Korean Chem. Soc. 2001, 22, 1289.
- Tait, K. M.; Parkinson, J. A.: Jones, A. C.; Ebenezer, W. J.; Bates, S. P. Chem Phys. Lett. 2003, 374, 372.
- Law, K. Y.; Facci, J. S.; Balley, F. C.; Yanus, J. F. J. Imaging Sci. 1990, 34, 31.
- 14. Jipson, V. B.; Jones, C. R.; J. Vac Sci Technol. 1981, 18, 105.
- 15. Furki, M.; Pu, L. S. Mol. Cryst. Liq. Cryst. 1993, 227, 325.
- Terpetsching E.; Szmacinski H.: Ozinskas A. Analytical Biochem. 1994, 217, 197.
- 17. Lin T.: Peng. BX. Dyes and Pigments 1997, 35, 331.
- 18. Lin T.: Peng. BX. Dyes and Pigments 1998, 39, 201.
- 19. Lin T.: Peng, BX.; Bai, F. Dyes and Pigments 1999, 43, 67.
- Frisch, M. J.: Trucks, G. W.; Schlegel, G. B.: Gill, P. M. W.: Johnson, B. G.: Robb, M. A.: Cheeseman, J. R.: Keith, T.: Petersson, G. A.: Montgomery, J. A.; Raghavachari, K.; Al-Lagam, M. A.; Zakrzewski, V. G.: Ortiz, J. V.: Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.: Nanayakkara, A.; Challacombe, M.: Peng, C. Y.: Ayala, P. Y.; Chen, W.; Wong, M. W.: Andres, J. L.: Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.: Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.: Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 98, Revision A.7, Gaussian Inc., Pittsburgh, PA, 1998.
- 21. Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
- 22. Lee, C.; Yang, W.; Parr, R. G. Phys. Revs. B 1988, 37, 785.
- 23. Ditchfiled, R. Mol. Phys. 1974, 27, 789.