DOI QR코드

DOI QR Code

DNA Binding Mode of the Isoquinoline Alkaloid Berberine with the Deoxyoligonucleotide d(GCCGTCGTTTTACA)2

  • Park, Hye-Seo (Department of Biochemistry, Protein Network Research Center, Yonsei University) ;
  • Kim, Eun-Hee (Magnetic Resonance Team, Korea Basic Science institute) ;
  • Sung, Yoon-Hui (Department of Biochemistry, Yonsei University) ;
  • Kang, Mi-Ran (Department of Biology, Protein Network Research Center, Yonsei University) ;
  • Chung, In-Kwon (Department of Biology, Protein Network Research Center, Yonsei University) ;
  • Cheong, Chae-Joon (Magnetic Resonance Team, Korea Basic Science institute) ;
  • Lee, Weon-Tae (Department of Biochemistry, Protein Network Research Center, Yonsei University)
  • Published : 2004.04.20

Abstract

The ability of protoberberine alkaloids, berberine and berberrubine, to act as topoisomerase II poisons is linked to the anti-cancer activity. Minor alterations in structure have a significant effect on their relative activity. Berberine, which has methoxy group at the 19-position, is significantly less potent than berberrubine. Several observations support non-specific binding to HP14 by the berberine: (i) nonspecific upfield changes in $^1H$ chemical shift for protons of the berberine; (ii) the broadening of imino protons of HP14 upon binding of the berberine; (iii) very small increases in duplex melting temperature in the presence of the berberine. Our results reveal that substitution of a hydroxyl group to a methoxy group on the 19-position, thereby converting the berberrubine to the berberine is associated with a non-specific DNA binding affinity and a reduced topoisomerase II poisoning. The presence of a bulky 19-methoxy substituent decreases intercalating properties of berberine and makes it inactive as topoisomerase II poison.

Keywords

References

  1. Wang, J. C. Annu. Rev. Biochem. 1985, 54, 665. https://doi.org/10.1146/annurev.bi.54.070185.003313
  2. Osheroff, N. Pharmacol. Ther. 1989, 41, 223. https://doi.org/10.1016/0163-7258(89)90108-3
  3. Champoux, J. J. Mechanistic Aspect of Type-I Topoisomerases. InDNA Topology and Its Biological Effects; Cozzarelli, N. R., Wang,J. C., Eds.; Cold Spring Harbor Laboratory Press: Cold SpringHarbor, NY., U. S. A., 1990; p 217.
  4. Hsieh, T. Mechanistic Aspect of Type-I Topoisomerases. In DNATopology and Its Biological Effects; Cozzarelli, N. R., Wang, J. C.,Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor,NY., U. S. A., 1990; p 242.
  5. Liu, L. F. Annu. Rev. Biochem. 1989, 68, 351.
  6. Liu, L. F. Mechanistic Aspect of Type-I Topoisomerases. In DNATopology and Its Biological Effects; Cozzarelli, N. R., Wang, J. C.,Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor,NY., U. S. A., 1990; p 371.
  7. Schneider, E.; Hsiang, Y.-H.; Liu, L. F. Adv. Pharmacol. 1990, 21,183.
  8. Ishida, K.; Asao, T. Biochim. Biophys. Acta 2002, 1587, 155. https://doi.org/10.1016/S0925-4439(02)00078-9
  9. Reece, R. J.; Maxwell, A. Crit. Rev. Biochem. Mol. Biol. 1991, 26,335. https://doi.org/10.3109/10409239109114072
  10. Maxwell, A. J. Antimicrob. Chemother. 1992, 30, 409. https://doi.org/10.1093/jac/30.4.409
  11. Corbett, A. H.; Osheroff, N. Chem. Res. Toxicol. 1993, 6, 585. https://doi.org/10.1021/tx00035a001
  12. Monnot, M.; Mauffret, O.; Simon, V.; Lescot, E.; Psaume, B.;Saucier, J. M.; Charra, M.; Belehradek, J., Jr.; Fermandjian, S. J.Biol. Chem. 1991, 266, 1820.
  13. Gatto, B.; Sanders, M. M.; Yu, C.; Wu, H. Y.; Makhey, D.; LaVoie,E. J.; Liu, L. F. Cancer Res. 1996, 56, 2795.
  14. Makhey, D.; Gatto, B.; Yu, Y. C.; Liu, A.; Liu, L. F.; LaVoie, E. J.Bioorg. Med. Chem. 1996, 4, 781. https://doi.org/10.1016/0968-0896(96)00054-5
  15. Li, T. K.; Bathory, E.; LaVoie, E. J.; Srinivasan, A. R.; Olson, W.K.; Sauers, R. R.; Liu, L. F.; Pilch, D. S. Biochemistry 2000, 39,7107. https://doi.org/10.1021/bi000171g
  16. Kim, S. A.; Kwon, Y.; Kim, J. H.; Muller, M. T.; Chung, I. K.Biochemistry 1998, 37, 16316. https://doi.org/10.1021/bi9810961
  17. Ikekawa, T.; Ikeda, Y. J. Pharmacobiodyn. 1982, 5, 469. https://doi.org/10.1248/bpb1978.5.469
  18. Long, B. H.; Balasubramanian, B. N. Expert Opin. Ther. Pat. 2000, 10, 635. https://doi.org/10.1517/13543776.10.5.635
  19. Ogiso, Y.; Tomida, A.; Lei, S.; Omura, S.; Tsuruo, T. Cancer Res.2000, 60, 2429.
  20. Saran, A.; Srivastava, S.; Coutinho, E.; Maiti, M. Indian J.Biochem. Biophys. 1995, 32, 74.
  21. Li, W.-Y.; Lu, H.; Xu, C.-X.; Zhang, J.-B.; Lu, Z.-H. Spectrosc.Lett. 1998, 31, 1287. https://doi.org/10.1080/00387019808003303
  22. Ren, J.; Chaires, B. Biochemistry 1999, 38, 16067. https://doi.org/10.1021/bi992070s
  23. Kumar, A.; Wagner, G.; Ernst, R. R.; Wüthrich, K. Biochem.Biophys. Res. Comm. 1980, 95, 1. https://doi.org/10.1016/0006-291X(80)90695-6
  24. Bax, A.; Davis, D. G. J. Magn. Reson. 1985, 65, 355.
  25. Nagayama, K.; Kumar, A.; Wüthrich, K.; Ernst, R. R. J. Magn.Reson. 1980, 40, 321.
  26. Petersheim, M.; Turner, D. H. Biochemistry 1983, 22, 256. https://doi.org/10.1021/bi00271a004
  27. Wuthrich, K. NMR of Proteins and Nucleic Acids; Wiley: NewYork, NY, U. S. A., 1986.
  28. Jeon, Y. W.; Jung, J. W.; Kang, M.; Chung, I. K.; Lee, W. Bull.Korean Chem. Soc. 2002, 23, 391. https://doi.org/10.5012/bkcs.2002.23.3.391
  29. Qian, Y. Q.; Otting, G.; Billeter, M.; Muller, M.; Gehring, W.;Wuthrich, K. J. Mol. Biol. 1993, 234, 1070. https://doi.org/10.1006/jmbi.1993.1660
  30. Kay, L. E.; Muhandiram, D. R.; Farrow, N. A.; Aubin, Y.; Forman-Kay, J. D. Biochemistry 1996, 35, 361. https://doi.org/10.1021/bi9522312
  31. Brodsky, A. S.; Williamson, J. R. J. Mol. Biol. 1997, 267, 624. https://doi.org/10.1006/jmbi.1996.0879
  32. Foster, M. P.; Wuttke, D. S.; Case, D. A.; Gottesfeld, J. M.;Wright, P. E. Nat. Struct. Biol. 1997, 4, 605. https://doi.org/10.1038/nsb0897-605
  33. Davies, D. B.; Baranovsky, S. F.; Veselkov, A. N. J. Chem. Soc.FARADAY Trans. 1997, 93(8), 1559. https://doi.org/10.1039/a607815j
  34. Xu, Z.; Pilch, D. S.; Srinivasan, A. R.; Olson, W. K.; Geacintov,N. E.; Breslauer, K. J. Bioorg. Med. Chem. 1997, 5, 1137. https://doi.org/10.1016/S0968-0896(97)00050-3
  35. Mazzini, S.; Bellucci, M. C.; Mondelli, R. Bioorg. Med. Chem.2003, 11, 505. https://doi.org/10.1016/S0968-0896(02)00466-2
  36. Pilch, D. S.; Yu, C.; Makhey, D.; LaVoie, E. J.; Srinivasan, A. R.;Olson, W. K.; Sauers, R. R.; Breslauer, K. J.; Geacintov, N. E.;Liu, L. F. Biochemistry 1997, 36, 12542. https://doi.org/10.1021/bi971272q
  37. Bioorg. Med. Chem. v.5 Xu, Z.; Pilch, D. S.; Srinivasan, A. R.; Olson, W. K.; Geacintov, N. E.; Breslauer, K. J. https://doi.org/10.1016/S0968-0896(97)00050-3
  38. Bioorg. Med. Chem. v.11 Mazzini, S.; Bellucci, M. C.; Mondelli, R. https://doi.org/10.1016/S0968-0896(02)00466-2
  39. Biochemistry v.36 Pilch, D. S.; Yu, C.; Makhey, D.; LaVoie, E. J.; Srinivasan, A. R.; Olson, W. K.; Sauers, R. R.; Breslauer, K. J.; Geacintov, N. E.; Liu, L. F. https://doi.org/10.1021/bi971272q

Cited by

  1. Structural studies on ligand–DNA systems: A robust approach in drug design vol.37, pp.3, 2012, https://doi.org/10.1007/s12038-012-9212-8
  2. DNA-Binding Affinities and Sequence Specificities of Protoberberine Alkaloids and Their Demethylated Derivatives: A Comparative Study vol.4, pp.2, 2007, https://doi.org/10.1002/cbdv.200790019
  3. Antiparasitic activity of certain isoquinoline alkaloids and their hypothetical complexes with oligonucleotides vol.44, pp.3, 2008, https://doi.org/10.1007/s10600-008-9057-4
  4. Detection of Guanine Based DNA and its Damage with Electrodes Incorporating a Polymeric film of [Ru(v-bpy)3]2+ vol.49, pp.4, 2005, https://doi.org/10.5012/jkcs.2005.49.4.343
  5. Amplification of DNA-binding affinities of protoberberine alkaloids by appended polyamines vol.17, pp.4, 2004, https://doi.org/10.1016/j.bmcl.2006.11.037
  6. Effect of berberine on the antioxidant status, ultrastructural modifications and protein bound carbohydrates in azoxymethane-induced colon cancer in rats vol.177, pp.3, 2009, https://doi.org/10.1016/j.cbi.2008.09.027
  7. 황백(黃柏)의 berberine이 DNA의 기능조절에 미치는 영향에 관한 형광이방성 연구 vol.33, pp.5, 2004, https://doi.org/10.6116/kjh.2018.33.5.105