DOI QR코드

DOI QR Code

Anodic Stripping Differential Pulse Voltammetric Determination of Trace Amounts of Lead after Preconcentration of Its Complex with 2-(5-Bromo-2-pyridylazo)-5-diethylaminophenol onto Natural Analcime Zeolite by Column Method

  • Published : 2004.08.20

Abstract

This work assesses the potential of natural Analcime Zeolite as an adsorbent for preconcentration of lead (II) traces. Lead is quantitatively retained on 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol by column method with Analcime in the pH range of 5-6.5 and 2 mL $min^{?1}$ flow rate. Lead was removed from the column with 10.0 mL of 4 M hydrochloric acid and was determined by anodic stripping differential pulse voltammetry. 0.5ppb detection limit was obtained and linear dynamic range was 3 to $1.2{\times}10^5$ ppb in final solution with correlation coefficient of 0.999 and relative standard deviation of ${\pm}$ 1.2% (for eight replicate determination of 2.5 ${\mu}g\;mL^{?1}$ of lead). Various parameters such as the effect of pH, flow rate, instrumental conditions and interferences of some ions on the determination of lead have been studied in detail for optimization of conditions. The method was successfully applied for determination of lead in various samples.

Keywords

References

  1. Soylak, M.; Elci, L.; Divrikli, U.; Dogan, M. Talanta 2002, 56,565. https://doi.org/10.1016/S0039-9140(01)00575-6
  2. Yu, M. Q.; Liu, G. O.; Jin, Q. Talanta 1983, 30, 265. https://doi.org/10.1016/0039-9140(83)80060-5
  3. Vanderborght, B. M.; Vangrieken, R. E. Anal. Chem. 1977, 40, 311.
  4. Kimura, K.; Yamushita, H.; Kondda, J. Bunseki Kagaku 1986, 35,400. https://doi.org/10.2116/bunsekikagaku.35.4_400
  5. Soylak, M.; Elci, L. Int. J. Environ. Anal. Chem. 1997, 66, 51. https://doi.org/10.1080/03067319708026273
  6. Burba, P.; Willmer, P. G. Talanta 1983, 30, 381. https://doi.org/10.1016/0039-9140(83)80087-3
  7. Khan, A. S.; Chow, A. Talanta 1986, 33, 182. https://doi.org/10.1016/0039-9140(86)80040-6
  8. Taher, M. A. Analytical Sciences 2001, 17, 969. https://doi.org/10.2116/analsci.17.969
  9. Taher, M. A.; Puri, B. K.; Bansal, R. K. Microchem. J. 1998, 58,21. https://doi.org/10.1006/mchj.1997.1502
  10. Taher, M. A. Talanta 2000, 52, 181. https://doi.org/10.1016/S0039-9140(00)00320-9
  11. Ferreria, S. L. C.; Brito, C. F. D.; Danats, A. F. Talanta 1999, 48,1173. https://doi.org/10.1016/S0039-9140(98)00339-7
  12. Bagheri, M.; Mashhadizadeh, M. H.; Razee, S. Talanta 2003, 60,839. https://doi.org/10.1016/S0039-9140(03)00136-X
  13. Pena, Y. P.; Lopez, W.; Burguera, J. L.; Burguera, M.; Gallignani,M.; Brunetto, R.; Carrero, P.; Rondon, C.; Imbert, F. Anal. Chim.Acta 2000, 403, 249. https://doi.org/10.1016/S0003-2670(99)00566-8
  14. Introduction to Zeolite Science and Practice. Studies in SurfaceSciences and Catalysis; Bekkum, H. Van., Flanigen, E. M.,Jansen, J. C., Eds.; Elsevier: Amsterdam, 1991; vol 58.
  15. Giannetto, G. Zeolitas; Innovacion Technoligica: Caracas,Venezuela, 1990.
  16. Ingram, B. T.; Ottewill, R. H. Cationic Surfactants; Rubingh, D.N., Holland, P. M., Eds.; Marcel Dekkers: New York, 1991; Vol 37, p 51.
  17. Taher, M. A.; Puri, B. K. Talanta 1999, 48, 355. https://doi.org/10.1016/S0039-9140(98)00254-9
  18. Odshima, T.; Kawate, Y.; Ishii, H. Bunseki Kagaku 1988, 37, 439. https://doi.org/10.2116/bunsekikagaku.37.8_439
  19. Naguosa, Y.; Sato, N. Bunseki Kagaku 1987, 36, 877. https://doi.org/10.2116/bunsekikagaku.36.12_877
  20. Puri, B. K.; Lai, A. K.; Bansal, H. Analytical Sciences 2002, 18,427. https://doi.org/10.2116/analsci.18.427
  21. Taher, M. A.; Puri, B. K. Electroanalysis 1999, 11, 809. https://doi.org/10.1002/(SICI)1521-4109(199907)11:10/11<809::AID-ELAN809>3.0.CO;2-S
  22. Fujinaga, Y.; Nagaosa, Y. Chem. Lett. 1987, 6, 587.
  23. Jiang, M.; Meng, F.; Gong, C.; Zhio, Z. Analyst 1990, 115, 49. https://doi.org/10.1039/an9901500049
  24. Benjamin, J.; Osterloh, J. D.; Halt, B. H.; Alessandro, A. D. Anal.Chem. 1994, 66, 1983. https://doi.org/10.1021/ac00085a010
  25. Fernando, A. R.; Plambeck, J. A. Analyst 1992, 117, 39. https://doi.org/10.1039/an9921700039
  26. Taher, M. A. Talanta 2000, 52, 301. https://doi.org/10.1016/S0039-9140(00)00327-1
  27. Vogel, A. I. Text Book of Quantitative Chemical Analysis, 6th ed.;Longman: London, 2000; p 386.
  28. Faghihian, H.; Mostafavi, A.; Mohammadi, A. J. Sci. I. R. Iran2001, 12, 327.
  29. Seryotkin, Y. V.; Bakakin, V. V.; Belitsky, I. A.; Fursenko, B. A.Microporous and Mesoporous Materials 2000, 39, 265. https://doi.org/10.1016/S1387-1811(00)00202-X

Cited by

  1. An electrochemical sensor for stripping analysis of Pb(II) based on multiwalled carbon nanotube functionalized with 5-Br-PADAP vol.15, pp.11-12, 2011, https://doi.org/10.1007/s10008-010-1197-3
  2. A Highly Sensitive Adsorptive Stripping Voltammetric Method for Simultaneous Determination of Lead and Vanadium in Foodstuffs vol.5, pp.2, 2012, https://doi.org/10.1007/s12161-011-9236-y
  3. Modified analcime loaded with zincon as a useful material for the separation and preconcentration of trace palladium and its determination by third-derivative spectrophotometry vol.62, pp.11, 2007, https://doi.org/10.1134/S1061934807110044
  4. Study on solid-phase extraction and flame atomic absorption spectrometry for the selective determination of cadmium in water and plant samples with modified clinoptilolite vol.172, pp.1, 2004, https://doi.org/10.1016/j.jhazmat.2009.06.163
  5. Nano-alumina coated with SDS and modified with salicylaldehyde-5-sulfonate for extraction of heavy metals and their determination by anodic stripping voltammetry vol.20, pp.5, 2014, https://doi.org/10.1016/j.jiec.2013.12.073