DOI QR코드

DOI QR Code

Synthesis, Characterization, and Electrochemical Behavior of Viologen-Functionalized Poly(Amidoamine) Dendrimers

  • Oh, Mi-Kyung (Division of Natural Science, Korea University) ;
  • Bae, Sang-Eun (Division of Natural Science, Korea University) ;
  • Yoon, Jung-Hyun (Division of Natural Science, Korea University) ;
  • Roberts, Mary F. (Chemistry Department, Boston College) ;
  • Cha, Eun-Hee (Division of Natural Science, Korea University) ;
  • J. Lee, Chi-Woo (Division of Natural Science, Korea University)
  • Published : 2004.05.20

Abstract

Amineterminated, ethylenediamine core polyamidoamine starburst dendrimers of generation 2 (G2), generation 4 (G4) and generation 6 (G6) have been successfully surface-modified via an amide coupling reaction with 4-ethyl, 4'-(3-propionic) bipyridinium cation and the electrochemical behavior of the resulting dendrimers were investigated in aqueous potassium chloride electrolyte solutions. The 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide-mediated reaction resulted in 25-39% end-group functionalization. The water-soluble 4-ethyl, 4'-(3-propylamide) bipyridinium dibromide dendrimers (G2-V2+, G4-V2+ and G6-V2+) were characterized by $^1H$ NMR and UV-Vis spectroscopic methods. The cyclic voltammetric and chronoamperometric experiments were performed to determine the diffusion coefficient and the number of electrons transferred in the process of the first reduction of the viologen-functionalized dendrimers. Adsorption of viologen-functionalized dendrimers at electrode surface was evidenced in the voltammograms. Experimentally determined diffusion coefficients were in good agreement with the values expected from the Stokes-Einstein relation, while the number of electrons transferred concurred with the extent of functionalization determined by $^1H$ NMR and UV-Vis spectra.

Keywords

References

  1. Storrier, G. D.; Takada, K.; Abruña, H. D. Langmuir 1999, 15,872. https://doi.org/10.1021/la980939m
  2. Tomalia, A. D. Sci. Am. 1995, 62.
  3. Newkome, G. R.; Narayanan, V. V.; Godinez, L. A.; Cordero, E.P.; Echegoyen, L. Macromolecules 1999, 32, 6782. https://doi.org/10.1021/ma990143+
  4. Dandliker, P. J.; Diederich, F.; Gross, M.; Knobler, C. B.; Louati,A.; Sanford, E. M. Angew. Chem. Int. Ed. Engl. 1994, 33, 1739. https://doi.org/10.1002/anie.199417391
  5. Achar, S.; Immoos, C. E.; Hill, M. G.; Catalano, V. J. Inorg.Chem. 1997, 36, 2314. https://doi.org/10.1021/ic961435j
  6. Pittelkow, M.; Moth-Poulsen, K.; Boas, U.; Christensen, J. B.Langmuir 2003, 19, 7682. https://doi.org/10.1021/la0348822
  7. Tsukruk, V. V.; Rinderspacher, F.; Bliznyuk, V. N. Langmuir1997, 13, 2171. https://doi.org/10.1021/la960603h
  8. Emmrich, E.; Franzka, S.; Schmid, G.; Majoral, J.-P. Nano Lett. 2002, 1239.
  9. Baars, M. W. P. L.; Söntjens, S. H. M.; Fischer, H. M.; Peerlings,H. W. I.; Meijer, E. W. Chem. Eur. J. 1998, 4, 2456. https://doi.org/10.1002/(SICI)1521-3765(19981204)4:12<2456::AID-CHEM2456>3.0.CO;2-L
  10. Miller, L. L.; Duan, R. G.; Tully, D. C.; Tomalia, D. A. J. Am.Chem. Soc. 1997, 119, 1005. https://doi.org/10.1021/ja963270j
  11. Stewart, G. M.; Fox, M. A. J. Am. Chem. Soc. 1996, 118, 4354. https://doi.org/10.1021/ja954021i
  12. Hawker, C. J.; Wooley, K. L.; Frechet, J. M. J. J. Am. Chem. Soc.1993, 115, 4375. https://doi.org/10.1021/ja00063a071
  13. Lee, J.-H.; Lim, Y.-B.; Choi, J.-S.; Choi, M.-U.; Yang, C.-H.;Park, J.-S. Bull. Korean Chem. Soc. 2003, 24, 1637. https://doi.org/10.5012/bkcs.2003.24.11.1637
  14. Kim, T.-I.; Jang, H.-S.; Joo, D.-K.; Choi, J.-S.; Park, J.-S. Bull. Korean Chem. Soc. 2003, 24, 123. https://doi.org/10.5012/bkcs.2003.24.1.123
  15. Ottaviani, M. F.; Sacchi, B.; Turro, N. J.; Chen, W.; Jockusch, S.;Tomalia, D. A. Macromolecules 1999, 32, 2275. https://doi.org/10.1021/ma9815859
  16. Valerio, C.; Fillaut, J. L.; Ruiz, J.; Guittard, J.; Blais, J. C.; Astruc,D. J. Am. Chem. Soc. 1997, 119, 2588. https://doi.org/10.1021/ja964127t
  17. Fillaut, J. L.; Linares, J.; Astruc, D. Angew. Chem. Int. Ed. Engl.1994, 33, 2460. https://doi.org/10.1002/anie.199424601
  18. Gorman, C. B.; Parkhurst, B. L.; Su, W. Y.; Chen, K. Y. J. Am.Chem. Soc. 1997, 119, 1141. https://doi.org/10.1021/ja963541q
  19. Cardona, C. M.; Kaifer, A. E. J. Am. Chem. Soc. 1998, 120, 4023. https://doi.org/10.1021/ja9742951
  20. Cuadrado, I.; Moran, M.; Casado, C. M.; Alonso, B.; Lobete, F.;García, B.; Ibisate, M.; Losada, J. Organometallics 1996, 15,5278. https://doi.org/10.1021/om9605948
  21. Takada, K.; Diaz, D. J.; Abruña, H. D.; Cuadrado, I.; Casado, C.;Alonso, B.; Moran, M.; Losada, J. J. Am. Chem. Soc. 1997, 119,10763. https://doi.org/10.1021/ja9716315
  22. Newkome, G. R.; Narayanan, V. V.; Echegoyen, L.; Cordero, P.;Luftmann, H. Macromolecules 1997, 30, 5187. https://doi.org/10.1021/ma9703214
  23. Takada, K.; Storrier, G. D.; Morán, M.; Abruña, H. D. Langumuir1999, 15, 7333. https://doi.org/10.1021/la9903752
  24. Vogtle, F.; Plevoets, M.; Nieger, M.; Azzellini, G. C.; Credi, A.;Cola, L. D.; Marchis, V. D.; Venturi, M.; Balzani, V. J. Am. Chem.Soc. 1999, 121, 6290. https://doi.org/10.1021/ja990430t
  25. Kiwi, J.; Gratzel, M. J. Am. Chem. Soc. 1979, 101, 7214. https://doi.org/10.1021/ja00518a015
  26. Andrieux, C. P.; Hapiot, P.; Savéant, J. M. J. Electroanal. Chem.1985, 89, 121.
  27. Oh, M.-K.; Okajima, T.; Kitamula, F.; Lee, C.-W.; Tokuda, K.;Ohsaka, T. Chem. Lett. 1997, 67.
  28. Lee, C.-W.; Oh, M.-K. Bull.Korean Chem. Soc. 1994, 15, 339.
  29. Lee, C.-W.; Oh, M.-K.; Jang, J.-M. Langmuir 1993, 9, 1934. https://doi.org/10.1021/la00031a051
  30. Young, R. C.; Meyer, T. J.; Whitten, D. G. J. Am. Chem. Soc.1975, 97, 4781. https://doi.org/10.1021/ja00849a064
  31. Ward, M. D.; White, J. R.; Bard, A. J. J. Am. Chem. Soc. 1983,105, 27. https://doi.org/10.1021/ja00339a007
  32. Bookbinder, K.; Wrighton, M. S. J. Electrochem. Soc. 1983, 130,1080. https://doi.org/10.1149/1.2119888
  33. Gomez, M.; Li, J.; Kaifer, A. E. Langmuir 1991, 7, 1797. https://doi.org/10.1021/la00056a037
  34. Sehgal, D.; Vijay, I. K. Anal. Biochem. 1994, 218, 87. https://doi.org/10.1006/abio.1994.1144
  35. Yoon, H.-C.; Hong, M.-Y.; Kim, H.-S. Anal. Chem. 2000, 72,4420. https://doi.org/10.1021/ac0003044
  36. Templeton, A. C.; Cliffel, D. E.; Murry, R. W. J. Am. Chem. Soc.1999, 121, 7081. https://doi.org/10.1021/ja990513+
  37. Watanabe, T.; Honda, K. J. Phys. Chem. 1982, 86, 2617. https://doi.org/10.1021/j100211a014
  38. Bard, J. A.; Faulkner, L. R. Electrochemical Methods, 2nd Ed.; John Wiley & Sons, Inc.: New York, 2001.
  39. Smith, T. W.; Kuder, J. E.; Wychick, D. J. Poly. Sci. 1976, 36,2433.
  40. Ottaviani, M. F.; Montalti, F.; Romanelli, M.; Turro, N. J.;Tomalia, D. A. J. Phys. Chem. 1996, 100, 11033. https://doi.org/10.1021/jp953261h
  41. Ottaviani, M. F.; Montalti, F.; Turro, N. J.; Tomalia, D. A. J. Phys.Chem. B 1997, 101, 158. https://doi.org/10.1021/jp962857h
  42. Baranski, A. S.; Fawcett, W. R.; Gilbert, C. M. Anal. Chem. 1985,57, 166. https://doi.org/10.1021/ac00279a041
  43. Baur, J. E.; Wightman, R. M. J. Electroanal. Chem. 1991, 305, 73. https://doi.org/10.1016/0022-0728(91)85203-2

Cited by

  1. Application of Peptide Gemini Surfactants as Novel Solubilization Surfactants for Photosystems I and II of Cyanobacteria vol.29, pp.37, 2013, https://doi.org/10.1021/la402167v
  2. Convergent Syntheses of Dendrimers Having Photo-responsible and Redox-active Unit vol.26, pp.5, 2005, https://doi.org/10.5012/bkcs.2005.26.5.715
  3. Distance indices calculating for two classes of dendrimer vol.1, pp.2, 2004, https://doi.org/10.1080/24749508.2017.1332857