DOI QR코드

DOI QR Code

Rotational State Distributions of I2(B) from Vibrational Predissociation of I2(B)-Ne

  • Cho, Sung-Sil (Department of Chemistry and School of Molecular Science (BK21), Sungkyunkwan Univeristy) ;
  • Sun, Ho-Sung (Department of Chemistry and School of Molecular Science (BK21), Sungkyunkwan Univeristy)
  • Published : 2004.09.20

Abstract

The vibrational predissociation of triatomic, i.e., atom-diatom, van der Waals complexes in transient electronic excited state has been widely investigated. The predissociation rates or lifetimes are major concerns of the previous studies. Experimentally rotational state distributions of diatomic product are hardly investigated and few theoretical stuides on rotational state distributions have appeared in literature. In this work, choosing the frequently studied $I_2(B)-Ne$ complex as an example, we investigate the change of rotational state distributions of $I_2(B)-Ne$ produced from predissociation of the various initial states of $I_2(B)-Ne$. The present study on the rotational distributions indicates that rotational state distributions depend significantly on the predissociation energy and the van der Waals vibrational modes of $I_2(B)-Ne$. That is, the initial state dependency of rotational state distributions is extensively discussed.

Keywords

References

  1. Rohrbacher, A.; Halberstadt, N.; Janda, K. C. Ann. Rev. Phys.Chem. 2000, 51, 405. https://doi.org/10.1146/annurev.physchem.51.1.405
  2. Buchachenko, A. A.; Halberstadt, N.; Lepetit, B.; Roncero, O. Int.Rev. Phys. Chem. 2003, 22, 153. https://doi.org/10.1080/0144235031000075726
  3. Kubiak, G.; Fitch, P. S. H.; Wharton, L.; Levy, D. H. J. Chem.Phys. 1978, 68, 4477. https://doi.org/10.1063/1.435530
  4. Sharfin, W.; Johnson, K. E.; Wharton, L.; Levy, D. H. J. Chem.Phys. 1979, 71, 1292. https://doi.org/10.1063/1.438429
  5. Kenny, J. E.; Johnson, K. E.; Sharfin, W.; Levy, D. H. J. Chem.Phys. 1980, 72, 1109. https://doi.org/10.1063/1.439252
  6. Blazy, J. A.; DeKoven, B. M.; Russell, T. D.; Levy, D. H. J. Chem.Phys. 1980, 72, 2439. https://doi.org/10.1063/1.439438
  7. Asano, Y.; Yabushita, S. Bull. Korean Chem. Soc. 2003, 24, 703. https://doi.org/10.5012/bkcs.2003.24.6.703
  8. Schatz, G. C.; Gerber, R. B.; Ratner, M. A. J. Chem. Phys. 1988,88, 3709. https://doi.org/10.1063/1.453870
  9. Garcia-Vela, A.; Villarreal, P.; Delgado-Barrio, G. J. Chem. Phys.1991, 94, 7868. https://doi.org/10.1063/1.460122
  10. Willberg, D. M.; Guttmann, M.; Breen, J. J.; Zewail, A. H. J.Chem. Phys. 1992, 96, 198. https://doi.org/10.1063/1.462499
  11. Guttmann, M.; Willberg, D. M.; Zewail, A. H. J. Chem. Phys.1992, 97, 8037. https://doi.org/10.1063/1.463426
  12. Gruebele, M.; Zewail, A. H. J. Chem. Phys. 1993, 98, 883. https://doi.org/10.1063/1.464253
  13. Rubayo-Soneira, J.; García-Vela, A.; Villarreal, P.; Delgado-Barrio, G. Chem. Phys. Lett. 1995, 243, 236. https://doi.org/10.1016/0009-2614(95)00851-T
  14. García-Vela, A. J. Chem. Phys. 1996, 104, 1047. https://doi.org/10.1063/1.470830
  15. Buchachenko, A. A. Chem. Phys. Lett. 1998, 292, 273. https://doi.org/10.1016/S0009-2614(98)00666-6
  16. Seong, J.; Sun, H. Bull. Korean Chem. Soc. 1998, 19, 539.
  17. Bastida, A.; Zuñiga, J.; Requena, A.; Halberstadt, N.; Beswick, J.A. J. Chem. Phys. 1998, 109, 6320. https://doi.org/10.1063/1.477274
  18. Jung, J.; Sun, H. Chem. Phys. Lett. 2001, 336, 311. https://doi.org/10.1016/S0009-2614(01)00133-6
  19. Jung, J.; Sun, H. Mol. Phys. 2001, 99, 1867. https://doi.org/10.1080/00268970110078326
  20. Burroughs, A.; Kerenskaya, G. K.; Heaven, M. C. J. Chem. Phys.2001, 115, 784. https://doi.org/10.1063/1.1378317
  21. García-Vela, A. J. Phys. Chem. A 2002, 106, 6857. https://doi.org/10.1021/jp020690o
  22. Jung, J.; Sun, H. Bull. Korean Chem. Soc. 2002, 23, 245. https://doi.org/10.5012/bkcs.2002.23.2.245
  23. Heaven, M. C.; Buchachenko, A. A. J. Mol. Spectrosc. 2003, 222,31. https://doi.org/10.1016/S0022-2852(02)00057-7
  24. Cho, S.; Sun, H. Chem. Phys. Lett. 2003, 377, 406. https://doi.org/10.1016/S0009-2614(03)01204-1
  25. Lee, C.-W. Bull. Korean Chem. Soc. 1995, 16, 957.
  26. Lee, C.-W. Bull. Korean Chem. Soc. 1995, 16, 1193.

Cited by

  1. Rigorous Study of the Unbinding Transition of Biomembranes and Strings from Morse Potentials vol.2013, pp.2314-4777, 2013, https://doi.org/10.1155/2013/320718
  2. Unbinding transition from fluid membranes with associated polymers vol.36, pp.10, 2013, https://doi.org/10.1140/epje/i2013-13125-9
  3. The Morse potential eigenenergy by the analytical transfer matrix method vol.338, pp.3, 2004, https://doi.org/10.1016/j.physleta.2005.02.054