DOI QR코드

DOI QR Code

Indirect Spectrophotometric Determination of Trace Quantities of Hydrazine

  • Haji Shabani, A.M. (Department of Chemistry, Yazd University) ;
  • Dadfarnia, S. (Department of Chemistry, Yazd University) ;
  • Dehghan, K. (Department of Chemistry, Yazd University)
  • Published : 2004.02.20

Abstract

An indirect, sensitive and accurate method for the determination of trace amounts of hydrazine is described. The method is based on the oxidation of hydrazine by a known excess of iodate in the presence of hydrochloric acid. The unreacted iodate is used in the oxidation of hydroxylamine to nitrite. Sulfanilic acid is diazotized by the nitrite formed. The resulting diazonium ion is coupled with N-(1-naphthyl)ethylenediamine to form a stable azo dye, which shows an absorption maximum at 540 nm. Hydrazine can be determined in the range of 20-400 ng $mL^{-1}$ with a detection limit of 3.1 ng $mL^{-1}$. The relative standard deviation for 50, 200 and 400 ng $mL^{-1}$ of hydrazine is 2, 1.5 and 1.3%, respectively (n = 10). The method was applied to the determination of hydrazine in water samples.

Keywords

References

  1. Audrieth, L. F.; Ogg, B. A. The Chemistry of Hydrazines; JohnWiley & Sons, Inc.: New York, 1951; pp 225-234.
  2. Vernote, E. H.; Macewen, J. D.; Bruner, R. H.; Haus, C. C.;Kinkead, E. R. Fundam. Appl. Toxicol. 1985, 5, 1050. https://doi.org/10.1016/0272-0590(85)90141-1
  3. Manes, J.; Campillos, P.; Font, G.; Martre, H.; Prognon, P. Analyst1987, 112, 1183. https://doi.org/10.1039/an9871201183
  4. Besada, A. Anal. Lett. 1988, 21, 1917. https://doi.org/10.1080/00032718808066357
  5. Sire, O. A.; Burno, J. Talanta 1979, 47, 26.
  6. Ortega-Barrales, P.; Molina-Diaz, A.; Pascual-Reguera, M. I.;Capitan-Vallvey, L. F. Anal. Chim. Acta 1997, 353, 115. https://doi.org/10.1016/S0003-2670(97)00386-3
  7. Wang, S.; Du, L.; Zhang, A.; Liu, D. Mikrochim. Acta 2000, 134,167. https://doi.org/10.1007/s006040050062
  8. El-Brashy, A. M.; El-Hussein, L. A. Anal. Lett. 1997, 30, 609. https://doi.org/10.1080/00032719708001805
  9. Safavi, A.; Ensafi, A. A. Anal. Chim. Acta 1995, 300, 307. https://doi.org/10.1016/0003-2670(94)00383-W
  10. Ensafi, A. A.; Naderi, B. Talanta 1998, 47, 645. https://doi.org/10.1016/S0039-9140(98)00113-1
  11. Balconi, M. L.; Sigon, F.; Borgarello, M.; Ferraroli, R.; Realini, F.Anal. Chim. Acta 1990, 234, 167. https://doi.org/10.1016/S0003-2670(00)83552-7
  12. Yang, M.; Li, H. L. Talanta 2001, 55, 479. https://doi.org/10.1016/S0039-9140(01)00456-8
  13. Wang, J.; Taha, Z. Talanta 1988, 35, 965. https://doi.org/10.1016/0039-9140(88)80229-7
  14. Athanasio-Malaki, E.; Koupparis, M. K. Talanta 1989, 36, 431. https://doi.org/10.1016/0039-9140(89)80224-3
  15. Ikeda, S.; Sutake, H.; Kohri, Y. Chem. Lett. 1984, 6, 873.
  16. Huamin, J.; Weiying, H.; Erkany, W. Talanta 1992, 39, 45. https://doi.org/10.1016/0039-9140(92)80048-I
  17. Vatsala, V.; Bansal, V.; Tuli, D. K.; Rai, M. M.; Jian, M. M.;Srivastava, S. P.; Bhatnagar, A. K. Chromatographia 1994, 38, 456. https://doi.org/10.1007/BF02269836
  18. Lv, J.; Huang, Y.; Zhang, Z. Anal. Lett. 2001, 34, 1323. https://doi.org/10.1081/AL-100104156
  19. He, Z.; Liu, X.; Luo, Q.; Tang, H.; Xu, Y.; Chen, H.; Zeng, Y.Microchem. J. 1996, 53, 356. https://doi.org/10.1006/mchj.1996.0051
  20. Gawargious, Y. A.; Beseda, A. Talanta 1975, 22, 757. https://doi.org/10.1016/0039-9140(75)80220-7
  21. Ratcliffe, N. M. Anal. Chim. Acta 1990, 239, 257. https://doi.org/10.1016/S0003-2670(00)83859-3
  22. Safavi, A.; Abdollahi, H.; Sedaghatpour, F.; Hormozi Nezhad, M.R. Talanta 2003, 59, 147. https://doi.org/10.1016/S0039-9140(02)00465-4
  23. Moorcroft, M. J.; Davis, J.; Compton, R. G. Talanta 2001, 54,785. https://doi.org/10.1016/S0039-9140(01)00323-X
  24. Sreekumar, N. V.; Narayana, B.; Hegde, P.; Manjunatha, B. R.;Sarojini, B. K. Microchem. J. 2003, 74, 27. https://doi.org/10.1016/S0026-265X(02)00093-0
  25. Verma, P.; Gupta, V. K. Talanta 1984, 31, 1013. https://doi.org/10.1016/0039-9140(84)80237-4

Cited by

  1. A study of the electrochemical behavior of an oxadiazole derivative electrodeposited on multi-wall carbon nanotube-modified electrode and its application as a hydrazine sensor vol.15, pp.11-12, 2011, https://doi.org/10.1007/s10008-010-1259-6
  2. Sequential determination of free acidity and hydrazine in presence of hydrolysable ions vol.99, pp.9, 2011, https://doi.org/10.1524/ract.2011.1836
  3. Developed New Procedure for Low Concentrations of Hydrazine Determination by Spectrophotometry: Hydrazine-Potassium Permanganate System vol.02, pp.02, 2012, https://doi.org/10.4236/jasmi.2012.22018
  4. Flow Injection Analysis of Hydrazine in the Aqueous Streams of Purex Process by Liquid Chromatography System Coupled with UV-Visible Detector vol.02, pp.03, 2012, https://doi.org/10.4236/jasmi.2012.23025
  5. Spectrophotometric and fluorometric methods for the determination of hydrazine and its methylated analogues vol.67, pp.2, 2012, https://doi.org/10.1134/S1061934812020116
  6. Thionine-Bromate as a New Reaction System for Kinetic Spectrophotometric Determination of Hydrazine in Cooling Tower Water Samples vol.2013, pp.2090-9071, 2013, https://doi.org/10.1155/2013/861625
  7. Disposable sensor for quantitative determination of hydrazine in water and biological sample vol.2, pp.4, 2010, https://doi.org/10.1039/b9ay00291j
  8. Vicinal Dinitridoruthenium-Substituted Polyoxometalates γ-[XW10O38{RuN}2]6− (X=Si or Ge) vol.15, pp.39, 2009, https://doi.org/10.1002/chem.200900965
  9. A Sensitive and Quantitative Isotope-Dilution LC-MS/MS Method for Analysis of Hydrazine in Tobacco Smoke vol.58, pp.2, 2020, https://doi.org/10.1093/chromsci/bmz069