DOI QR코드

DOI QR Code

Electrochemistry on Alternate Structures of Gold Nanoparticles and Ferrocene-Tethered Polyamidoamine Dendrimers

  • Suk, Jung-Don (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Joo-Han (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kwak, Ju-Hyoun (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST))
  • Published : 2004.11.20

Abstract

Self-assembled systems with polyamidoamine (PAMAM) dendrimers combined with gold nanoparticles have been widely studied because of their potential applications in molecular electronics, catalyst carriers, chemical sensors, and biomedical devices. In our work, gold nanoparticle monolayers and multilayers with pure and ferrocene-tethered PAMAM dendrimers as cross-linking molecules were deposited on a mixed self-assembled monolayer of gold substrates. The various generations of PAMAM dendrimers can be covalently attached to mercaptoundecanoic acid mixed with a mercaptoundecanol self-assembled monolayer. Cyclic voltammograms show that redox peak currents on the alternate multilayers of gold nanoparticles and ferrocene-tethered PAMAM dendrimers increase as the number of layers increases. Fourier transform IR external reflection spectroscopy and scanning electron microscopy support the results from electrochemical measurements.

Keywords

References

  1. Schmid, G.; Lifeng, C. F. Adv. Mater. 1998, 10, 515. https://doi.org/10.1002/(SICI)1521-4095(199805)10:7<515::AID-ADMA515>3.0.CO;2-Y
  2. Heath, J. R.; Kuekes, P. J.; Snider, G. S.; Williams, S. R. Science 1998, 280, 1716. https://doi.org/10.1126/science.280.5370.1716
  3. Bethell, D.; Schriffrin, D. J. Nature 1996, 382, 581. https://doi.org/10.1038/382581a0
  4. Lee, J.; Hwang, S.; Lee, H.; Kwak, J. J. Phys. Chem. B 2004, 108, 5372. https://doi.org/10.1021/jp037460+
  5. Baum, T.; Bethell, D.; Brust, M.; Schiffrin, D. J. Langmuir 1999, 15, 866. https://doi.org/10.1021/la980930k
  6. Fink, J.; Kiely, C. J.; Bethell, D.; Schiffrin, D. J. Chem. Mater. 1998, 10, 922. https://doi.org/10.1021/cm970702w
  7. Hostetler, M. J.; Green, S. J.; Stokes, J. J.; Murray, R. W. J. Am. Chem. Soc. 1996, 118, 4212. https://doi.org/10.1021/ja960198g
  8. Terrill, R. H.; Postlethwaite, T. A.; Murray, R. W. J. Am. Chem. Soc. 1995, 117, 12543.
  9. Musick, M. D.; Pena, D. J.; Botsko, S. L.; McEvoy, T. M.; Richardson, J. N.; Natan, M. J. Langmuir 1999, 15, 844. https://doi.org/10.1021/la980911a
  10. Musick, M. D.; Keating, C. D.; Keefe, N. H.; Natan, M. J. Chem. Mater. 1997, 9, 1499.
  11. Decher, G.; Hong, J. D. Ber. Bunsen-Ges. Phys. Chem. 1991, 95, 1430. https://doi.org/10.1002/bbpc.19910951122
  12. Decher, G.; Hong, J. D.; Schmitt, J. Thin Solid Films 1992, 210-211, 831. https://doi.org/10.1016/0040-6090(92)90417-A
  13. Decher, G.; Schmitt, J. Prog. Colloid Polym. Sci. 1992, 89, 160. https://doi.org/10.1007/BFb0116302
  14. Tomalia, D. A.; Naylor, A. M.; Goddard, W. A. Angew. Chem., Int. Ed. Engl. 1990, 29, 138. https://doi.org/10.1002/anie.199001381
  15. Frechet, J. M. J. Science 1994, 263, 1710. https://doi.org/10.1126/science.8134834
  16. Baker, L. A; Sun, L.; Crooks, R. M. Bull. Korean Chem. Soc. 2002, 23, 647. https://doi.org/10.5012/bkcs.2002.23.5.647
  17. Daniel, M.-C.; Ruiz, J.; Nlate, S.; Blais, J.-C.; Astruc, D. J. Am. Chem. Soc. 2003, 125, 2617. https://doi.org/10.1021/ja021325d
  18. Togni, A.; Hayashi, T. Ferrocenes; VCH: Weinheim, 1995.
  19. Yoon, K.; Kim, K.; Kwon, H. S. J. Korean Chem. Soc. 1999, 43, 271.
  20. Sutherland, W. S.; Winefordner, J. D. J. Colloid Interface Sci. 1992, 48, 129.
  21. Yoon, H. C.; Hong, M.-Y.; Kim, H.-S. Anal. Chem. 2000, 72, 4420. https://doi.org/10.1021/ac0003044
  22. Carpino, L.; Sadat-Aalaee, D.; Chao, G.; DeSelms, R. J. Am. Chem. Soc. 1990, 112, 9651. https://doi.org/10.1021/ja00182a041
  23. Galow, T. H.; Rodrigo, J.; Cleary, K.; Cooke, G.; Rotello, V. M. J. Org. Chem. 1999, 64, 3745. https://doi.org/10.1021/jo982219q
  24. Wells, M.; Crooks, R. M. J. Am. Chem. Soc. 1996, 118, 3988. https://doi.org/10.1021/ja960097i
  25. Rand, D. A. J.; Woods, R. J. Electroanal. Chem. 1971, 32, 29.
  26. Kim, E.; Kim, K.; Yang, H.; Kim, Y. T.; Kwak, J. Anal. Chem. 2003, 75, 5665. https://doi.org/10.1021/ac034253x
  27. Hodak, J.; Etchenique, R.; Calvo, E. J. Langmuir 1997, 13, 2708. https://doi.org/10.1021/la962014h
  28. Aihue, L.; Kashiwagi, Y.; Anzai, J. Electroanalysis 2003, 15, 1139. https://doi.org/10.1002/elan.200390139

Cited by

  1. Dendrimers in Layer-by-Layer Assemblies: Synthesis and Applications vol.18, pp.7, 2013, https://doi.org/10.3390/molecules18078440
  2. A fast and sensitive nanosensor based on MgO nanoparticle room-temperature ionic liquid carbon paste electrode for determination of methyldopa in pharmaceutical and patient human urine samples vol.19, pp.12, 2013, https://doi.org/10.1007/s11581-013-0940-z
  3. Selective Determination of Dopamine on a Boron-Doped Diamond Electrode Modified with Gold Nanoparticle/Polyelectrolyte-coated Polystyrene Colloids vol.18, pp.9, 2008, https://doi.org/10.1002/adfm.200701099
  4. Voltammetric studies of dendrimer multilayers: Layer-by-layer assembly of metal-peptide dendrimers multilayers vol.111, pp.2, 2009, https://doi.org/10.1002/app.28980
  5. Comparable Electron Capture Efficiencies for Various Protonated Sites on the 3rd Generation Poly(Propylene Imine) Dendrimer Ions: Applications by SORI-CAD and Electron Capture Dissociation Mass Spectr vol.26, pp.5, 2004, https://doi.org/10.5012/bkcs.2005.26.5.740
  6. Self-Assembly of Gold Nanoparticles at the Liquid/Liquid Interface vol.26, pp.8, 2004, https://doi.org/10.5012/bkcs.2005.26.8.1306
  7. A Polymer Interface for Varying Electron Transfer Rate with Electrochemically Formed Gold Nanoparticles from Spontaneously Incorporated Tetrachloroaurate(III) Ions vol.28, pp.10, 2004, https://doi.org/10.5012/bkcs.2007.28.10.1683
  8. Electrochemical properties of ferrocenylalkane dithiol-gold nanoparticle films prepared by layer-by-layer self-assembly vol.601, pp.1, 2007, https://doi.org/10.1016/j.jelechem.2006.11.009
  9. Modification of Au surfaces using new ferrocene derivatives vol.254, pp.6, 2008, https://doi.org/10.1016/j.apsusc.2007.07.068
  10. Engineering the Nanoparticle-Electrode Interface vol.31, pp.8, 2004, https://doi.org/10.1021/acs.chemmater.8b04977