DOI QR코드

DOI QR Code

Stoichiometric Solvation Effects. Solvolysis of Isopropylsulfonyl Chloride

  • Koo, In-Sun (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University) ;
  • Yang, Ki-Yull (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University) ;
  • Shin, Hyeon-Bae (Department of Chemistry, Dong-A University) ;
  • An, Sun-Kyoung (Department of Chemistry, Dong-A University) ;
  • Lee, Jong-Pal (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Ik-Choon (Department of Chemistry, Inha University)
  • Published : 2004.05.20

Abstract

Solvolyses of isopropylsulfonyl chloride (IPSC) in water, D_2O,\;CH_3OD$, and in aqueous binary mixtures of acetone, ethanol and methanol are investigated at 25, 35 and 45$^{\circ}C$. The Grunwald-Winstein plot of first-order rate constants for the solvolytic reaction of IPSC with $Y_{Cl}$ (based on 2-adamantyl chloride) shows marked dispersions into three separate lines for three aqueous mixtures with a small slope (m < 0.30). The extended Grunwald-Winstein plots for the solvolysis of IPSC show better correlation. The kinetic solvent isotope effects determined in water and methanol are in consistent with the proposed mechanism of the general base catalyzed and/or $S_AN/S_N2$ reaction mechanism for IPSC solvolyses based on mass law and stoichiometric solvation effect studies.

Keywords

References

  1. Barker, J. W.; Nathan, W. W. J. Chem. Soc. 1936, 236. https://doi.org/10.1039/jr9360000236
  2. Swain, C. G.; Langsdorf, W. P. J. Am. Chem. Soc. 1951, 73, 2813. https://doi.org/10.1021/ja01150a113
  3. Rossel, J. B. J. Chem. Soc. 1963, 5183. https://doi.org/10.1039/jr9630005183
  4. Yoh, S. D.; Tsuno, Y.; Yukawa, Y. J. Korean Chem. Soc. 1984, 28, 433.
  5. Yoh, S. D. J. Korean Chem Soc. 1975, 19, 240.
  6. Lee, I.; Rhyu, K. B.; Lee, B. C. J. Korean Chem. Soc. 1979, 23, 277.
  7. Rogne, O. J. Chem. Soc. (B) 1968, 1294.
  8. Kim, W. K.; Lee, I. J. Korean Chem. Soc. 1974, 18, 8.
  9. Ciuffarin, E.; Senatore, L.; Isola, M. J. Chem. Soc. Perkin Trans, 2 1972, 468.
  10. Stangeland, L. J.; Senatore, L.; Ciuffarin, E. J. Chem. Soc. Perkin Trans, 2 1972, 852.
  11. Hall, H. K. Jr. J. Am. Chem. Soc. 1956, 78, 1450. https://doi.org/10.1021/ja01588a048
  12. Robertson, R. E.; Laughton, P. M. Can. J. Chem. 1957, 35, 1319. https://doi.org/10.1139/v57-175
  13. Rossall, B.; Robertson, R. E. Can. J. Chem. 1971, 49, 1451. https://doi.org/10.1139/v71-237
  14. Ballistreri, F. P.; Cantona, A.; Maccarone, E.; Tomaselli, G. A.; Tripolone, M. J. Chem. Soc. Perkin Trans. 2 1981, 438.
  15. Koo, I. S.; Yang, K.; Kang, K.; Lee, I.; Bentley, T. W. J. Chem. Soc. Perkin Trans, 2 1998, 1179.
  16. Koo, I. S.; Yang, K.; Kang, K.; Lee, I. Bull. Korean Chem. Soc. 1998, 19, 968.
  17. Koo, I. S.; Lee, J. S.; Yang, K.; Kang, K.; Lee, I. Bull. Korean Chem. Soc.1999, 20, 573.
  18. Bentley, T. W.; Koo, I. S. J. Chem. Soc., Perkin Trans. 2 1989,1385.
  19. Bentley, T. W.; Carter, G. E. J. Am. Chem. Soc. 1982, 104, 5741. https://doi.org/10.1021/ja00385a031
  20. Bentley, T. W.; Harris, H. C.; Koo, I. S. J. Chem. Soc. PerkinTrans. 2 1988, 783.
  21. Bentley, T. W.; Harris, H. C. J. Chem. Soc. Perkin Trans. 2 1986,619.
  22. Koo, I. S.; An, S. K.; Yang, K.; Koh, H. J.; Choi, M. H.; Lee, I.Bull. Korean Chem. Soc. 2001, 22, 419.
  23. Bentley, T. W.; Bowen, C. T.; Morten, D. H.; Schleyer, P. v. R. J.Am. Chem. Soc. 1981, 103, 5466. https://doi.org/10.1021/ja00408a031
  24. Winstein, S.; Grunwald, E. J. Am. Chem. Soc. 1948, 70, 846. https://doi.org/10.1021/ja01182a117
  25. Bentley, T. W.; Dau-Schmidt, J.-P.; Llewellyn, G.; Mayr, H. J.Org. Chem. 1992, 57, 2387. https://doi.org/10.1021/jo00034a035
  26. Winstein, S.; Fainberg, A.; Grunwald, E. J. Am. Chem. Soc. 1957,79, 4146. https://doi.org/10.1021/ja01572a046
  27. Fainberg, A.; Winstein, S. J. Am. Chem. Soc. 1957, 79, 1957.
  28. Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951,73, 2700. https://doi.org/10.1021/ja01150a078
  29. Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845. https://doi.org/10.1021/jo00005a034
  30. Kevill, D. N.; D'Souza, M. J. Chem. Res(s). 1993, 174.
  31. Kevill, D. N. In Advances in Quantitative Structure-Property Relationships; Charton, M., Ed.; JAI Press: Greenwich, CT, 1966;Vol. 1, p 81.
  32. An, S. K.; Yang, J. S.; Cho, J. M.; Yang, K.; Lee, J. P.; Bentley, T. W.; Lee, I. Bull. Korean Chem. Soc. 2002, 23, 419. https://doi.org/10.1007/BF02706744
  33. Bentley, T. W.; Carter, G. E.; Harris, H. C. J. Chem. Soc. Perkin Trans. 2 1985, 938.
  34. Bentley, T. W.; Koo, I. S. J. Chem. Soc. Chem. Commun. 1988, 41.
  35. Bentley, T. W.; Jones, R. O.; Koo, I. S. J. Chem. Soc. Perkin Trans. 2 1994, 753.
  36. Bentley, T. W.; Jones, R. O.; Koo, I. S. J. Chem. Soc. Perkin Trans. 2 1994, 753.
  37. Bentley, T. W.; Jones, R. O. J. Chem. Soc. Perkin Trans. 2 1993, 2351.
  38. Yang, K.; Koo, I. S.; Lee, I. J. Phys. Chem. 1995, 99, 15035. https://doi.org/10.1021/j100041a019
  39. Yang, K.; Koo, I. S.; Kang, D. H.; Lee, I. Bull. Korean Chem. Soc. 1994, 15, 419.
  40. Yang, K.; Kang, K. D.; Koo, I. S.; Lee, I.Bull. Korean Chem. Soc. 1997, 18, 1186.
  41. Oh, J.; Yang, K.; Koo, I. S.; Lee, I. J. Chem. Res. 1993, 310.
  42. Bentley, T. W.; Koo, I. S.; Norman, S. J. J. Org. Chem. 1991, 56, 1604. https://doi.org/10.1021/jo00004a048
  43. Bentley, T. W.; Harris, H. C. J. Org. Chem. 1988, 53, 724. https://doi.org/10.1021/jo00239a004
  44. Lee, I.; Koo, I. S.; Shon, S. C.; Lee, H. H. Bull. Korean Chem.Soc. 1982, 3, 92.
  45. Bentley, T. W.; Jones, R. O. J. Chem. Soc.,Perkin Trans. 2 1993, 2351.
  46. Lee, I.; Koo, I. S.; Kang, H. K. Bull. Korean Chem. Soc. 1981, 2, 41. https://doi.org/10.1007/BF02697548
  47. Bentley, T. W.; Jones, R. O.; Koo, I. S. J. Chem. Soc., Perkin Trans. 2 1994, 753.
  48. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17, 121. https://doi.org/10.1002/9780470171967.ch5
  49. Kevill, D. N.; D'Souza, M. J. Phys. Org. Chem. 2002, 15, 881. https://doi.org/10.1002/poc.569
  50. Kevill, D. N.; D'Souza, M. J. Chem. Soc., Perkin Trans. 2 1997, 1721.
  51. Kivinen, A. Acta Chem. Scand. 1965, 19, 835.
  52. Frost, A.; Pearson, R. G. Kinetic and Mechanism, 2nd Ed.; Wiley:New York, 1961; Chap. 7.
  53. Kinetic and Mechanism Frost, A.;Pearson, R. G.

Cited by

  1. Correlation of the Rates of Solvolysis of Two Arenesulfonyl Chlorides and of trans-β-Styrenesulfonyl Chloride — Precursors in the Development of New Pharmaceuticals vol.9, pp.12, 2008, https://doi.org/10.3390/ijms9122639
  2. Concerted Solvent Processes for Common Sulfonyl Chloride Precursors used in the Synthesis of Sulfonamide-based Drugs vol.9, pp.5, 2008, https://doi.org/10.3390/ijms9050914
  3. Calculated Third Order Rate Constants for Interpreting the Mechanisms of Hydrolyses of Chloroformates, Carboxylic Acid Halides, Sulfonyl Chlorides and Phosphorochloridates vol.16, pp.12, 2015, https://doi.org/10.3390/ijms160510601
  4. Stoichiometric Effects. Correlation of the Rates of Solvolysis of Isopropenyl Chloroformate vol.26, pp.11, 2005, https://doi.org/10.5012/bkcs.2005.26.11.1761
  5. Rate and product studies in the solvolyses of N,N-dimethylsulfamoyl and 2-propanesulfonyl chlorides vol.4, pp.8, 2004, https://doi.org/10.1039/b518129a
  6. Rate and Product Studies in the Solvolyses of Two Arenesulfonic Anhydrides vol.2007, pp.6, 2004, https://doi.org/10.3184/030823407x218084