DOI QR코드

DOI QR Code

Artificial Metalloproteases with Broad Substrate Selectivity Constructed on Polystyrene

  • Ko, Eun-Hwa (Department of Chemistry, Seoul National University) ;
  • Suh, Jung-Hun (Department of Chemistry, Seoul National University)
  • 발행 : 2004.12.20

초록

Although the proteolytic activity of the Cu(II) complex of cyclen (Cyc) is greatly enhanced upon attachment to a cross-linked polystyrene (PS), the Cu(II)Cyc-containing PS derivatives reported previously hydrolyzed only a very limited number of proteins. The PS-based artificial metalloproteases can overcome thermal, mechanical, and chemical instabilities of natural proteases, but the narrow substrate selectivity of the artificial metalloproteases limits their industrial application. In the present study, artificial metalloproteases exhibiting broad substrate selectivity were synthesized by attaching Cu(II)Cyc to a PS derivative using linkers with various structures in an attempt to facilitate the interaction of various protein substrates with the PS surface. The new artificial metalloproteases hydrolyzed all of the four protein substrates (albumin, myoglobin, ${\gamma}$-globulin, and lysozyme) examined, manifesting $k_{cat}/K_m$ values of 28-1500 $h_{-1}M_{-1}$ at 50 $^{\circ}C$. The improvement in substrate selectivity is attributed to steric and/or polar interaction between the bound protein and the PS surface as well as the hydrophobicity of the microenvironment of the catalytic centers.

키워드

참고문헌

  1. Suh, J. Acc. Chem. Res. 2003, 36, 562. https://doi.org/10.1021/ar020037j
  2. Radzicka, A.; Wolfenden, R. J. Am. Chem. Soc. 1996, 118,6105. https://doi.org/10.1021/ja954077c
  3. Smith, R. S.; Hansen, D. E. J. Am. Chem. Soc. 1998, 120, 8910. https://doi.org/10.1021/ja9804565
  4. Ward, O. P. In Comprehensive Biotechnology; Moo-Young, M.,Ed.; Pergamon: Oxford, 1985; Vol. 3, pp 789-818.
  5. Tramper, J. In Applied Biocatalysis; Cabral, J. M. S., Best, D.,Boross, L., Tramper, J., Eds.; Harwood Academic Publishers:Chur, 1994; pp 1-46.
  6. Brantl, V.; Pfeiffer, A.; Herz, A.; Henschen, A.; Louttspeich, F.Peptides 1982, 3, 793. https://doi.org/10.1016/0196-9781(82)90017-1
  7. Meisel, H. FEBS Lett. 1986, 196, 223. https://doi.org/10.1016/0014-5793(86)80251-4
  8. Saito, H.; Miyakawa, H.; Tamura, Y.; Shimamura, S.; Tomita, M.J. Dairy Sci. 1991, 74, 3724. https://doi.org/10.3168/jds.S0022-0302(91)78563-9
  9. Fiat, A.-M.; Migliore-Samour, D.; Jolles, P.; Drouet, L.; Sollier, C.B. D.; Caen, J. J. Dairy Sci. 1993, 76, 301. https://doi.org/10.3168/jds.S0022-0302(93)77351-8
  10. Kayser, H.; Meisel, H. FEBS Lett. 1996, 383, 18. https://doi.org/10.1016/0014-5793(96)00207-4
  11. Matar, C.; Nadathur, S. S.; Bakalinski, A. T.; Goulet, J. J. DairySci. 1997, 80, 1965. https://doi.org/10.3168/jds.S0022-0302(97)76139-3
  12. Nakagomi, K.; Yamada, R.; Ebisu, H.; Sadakane, Y.; Akizawa, T.;Tanimura, T. FEBS Lett. 2000, 467, 235. https://doi.org/10.1016/S0014-5793(00)01163-7
  13. Suh, J. Acc. Chem. Res. 1992, 25, 273. https://doi.org/10.1021/ar00019a001
  14. Sutton, P. A.; Buckingham, D. A. Acc. Chem. Res. 1987, 20, 357. https://doi.org/10.1021/ar00142a001
  15. Rana, T. M.; Meares, C. F. Proc. Natl. Acad. Sci. USA 1991, 88,10578. https://doi.org/10.1073/pnas.88.23.10578
  16. Chin, J.; Jubian, V.; Mrejen, K. J. Chem. Soc., Chem. Commun.1990, 1326.
  17. Zhu, L.; Qin, L.; Parac, T. N.; Kostic, N. M. J. Am. Chem. Soc.1994, 116, 5218. https://doi.org/10.1021/ja00091a028
  18. Hegg, E. L.; Burstyn, J. N. J. Am. Chem. Soc. 1995, 117, 7015. https://doi.org/10.1021/ja00131a030
  19. Jang, B.-B.; Lee, K. P.; Min, D. H.; Suh, J. J. Am. Chem. Soc.1998, 120, 12008. https://doi.org/10.1021/ja981723+
  20. Yoo, C. E.; Chae, P.; Kim, J. E.; Jeong, E. J.; Suh, J. J. Am. Chem.Soc. 2003, 125, 14580. https://doi.org/10.1021/ja034730t
  21. Sarin, V. K.; Kent, S. B. H.; Tam, J. P.; Merrifield, R. B. Anal.Biochem. 1981, 117, 147. https://doi.org/10.1016/0003-2697(81)90704-1
  22. Hames, B. D. In Gel Electrophoresis of Proteins; Hames, B. D.;Rickwood, D., Eds.; IRL Press: New York, 1990; Chap. 1.
  23. Suh, J.; Oh, S. J. Org. Chem. 2000, 65, 7534. https://doi.org/10.1021/jo000896q
  24. Koike, T.; Takamura, M.; Kimura, E. J. Am. Chem. Soc. 1994,116, 8443. https://doi.org/10.1021/ja00098a002
  25. Clarkson, A. J.; Buckingham, D. A.; Rogers, A. J.; Blackman, A.G.; Clark, C. R. Inorg. Chem. 2000, 39, 4769. https://doi.org/10.1021/ic000325g
  26. Carroll, F. A. Perspectives on Structure and Mechanism inOrganic Chemistry; Brooks/Cole: Pacific Grove, 1998; p 329.