DOI QR코드

DOI QR Code

A Review of Surface Energy of Solid Electrodes with Emphasis on Its Controversial Issues in Interfacial Electrochemistry

  • Go Joo-Young (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Pyun Su-Il (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • Published : 2004.11.01

Abstract

A classical Lippmann equation valid for liquid electrodes can not describe the interfacial properties of solid electrodes due to the elastic surface strain on solid electrodes. Although there have been many attempts to derive the thermodynamic equations for solid electrodes Outing the past few decades, their validity has been still questioned by many researchers. In practice, although there are various experimental techniques to measure surface energy of solid electrodes, the results obtained by each technique are rather inconsistent due to the complexity of the surface strain on solid electrodes. This article covers these controversial issues in surface energy of solid electrodes. After giving brief summaries of the definition of the important thermodynamic parameters and the derivation of the thermodynamic equations for solid electrodes, the several experimental methods were introduced for the measurement of surface energy of solid electrodes. And then we discussed in detail the inconsistent results in the measurement of the potential of zero charge (pac) and the potential of electrocapillary maximum (ecm).

Keywords

References

  1. D. C. Grahame, Chem. Rev., 41, 441 (1947) https://doi.org/10.1021/cr60130a002
  2. H. Girault and D. Schiffrin, 'Electroanalytical Chemistry', A.J. Bard(Ed.), 15, 2, Marcel Dekker, New York (1989)
  3. R. G. Linford, Chem. Rev., 78, 81 (1978) https://doi.org/10.1021/cr60312a001
  4. G. Lang and K.E. Heusler, J. Electroanal. Chem., 377, 1 (1994) https://doi.org/10.1016/0022-0728(94)03422-2
  5. E. M. Gutman, J. Phys.: Condens. Matter, 7, L663 (1995) https://doi.org/10.1088/0953-8984/7/48/001
  6. R. Guidelli, J. Electroanal. Chem., 453, 69 (1998) https://doi.org/10.1016/S0022-0728(98)00134-X
  7. G. Lang and K. E. Heusler, J. Electroanal. Chem., 472, 168 (1999) https://doi.org/10.1016/S0022-0728(99)00289-2
  8. R. Guidelli, J. Electroanal. Chem., 472, 174 (1999) https://doi.org/10.1016/S0022-0728(99)00290-9
  9. G. Valincius, J. Electroanal. Chem., 478, 40 (1999) https://doi.org/10.1016/S0022-0728(99)00411-8
  10. G. Valincius, Langmuir, 14, 6307 (1998) https://doi.org/10.1021/la980440s
  11. S. Trasatti and R. Parsons, Pure Appl. Chem., 58, 437 (1986) https://doi.org/10.1351/pac198658030437
  12. R. Shuttleworth, Proc. Phys. Soc. A, 63, 444 (1950) https://doi.org/10.1088/0370-1298/63/5/302
  13. C. Herring, 'Structure and Properties of Solid Surfaces', R. Gomer and C. W. Smith (Eds.), 3, 5, University of Chicago Press, Chicago (1952)
  14. J. C. Eriksson, Surf. Sci., 14, 221 (1969) https://doi.org/10.1016/0039-6028(69)90056-9
  15. P. R. Couchman, W. A. Jesser, D. Kuhlmann-Wilsdorf, and J. P. Hirth, Surf. Sci., 33, 429 (1972) https://doi.org/10.1016/0039-6028(72)90138-0
  16. P. R. Couchman and W. A. Jesser, Surf. Sci., 34, 212 (1973) https://doi.org/10.1016/0039-6028(73)90116-7
  17. P. R. Couchman, D. H. Everett, and W. A. Jesser, J. Colloid Interface Sci., 52, 410 (1975) https://doi.org/10.1016/0021-9797(75)90219-2
  18. P. R. Couchman and D. H. Everett, J. Electroanal. Chem., 67, 382 (1976) https://doi.org/10.1016/S0022-0728(76)80051-4
  19. R. S. Perkins, R. C. Livingstone, T. N. Anderson, and H. Eyring, J. Phys. Chem., 69, 3329 (1965) https://doi.org/10.1021/j100894a018
  20. D. D. Bode, T. N. Anderson, and H. Eyring, J. Phys. Chem., 71, 792 (1967) https://doi.org/10.1021/j100863a002
  21. A. Frumkin, 'Potential of Zero Charge', Nauka, Moscow, 1979
  22. T. R. Beck, J. Phys. Chem., 73, 466 (1969) https://doi.org/10.1021/j100722a045
  23. K.-F. Lin and T. R. Beck, J. Electrochem. Soc., 123, 1145 (1976) https://doi.org/10.1149/1.2133024
  24. K.-F. Lin, J. Electrochem. Soc., 125, 1077 (1978) https://doi.org/10.1149/1.2131623
  25. T. R. Beck and K.-F. Lin, J. Electrochem. Soc., 126, 252 (1979) https://doi.org/10.1149/1.2129015
  26. T. Agladze and A. Podobayev, Electrochim. Acta, 36, 859 (1991) https://doi.org/10.1016/0013-4686(91)85286-G
  27. A. Grzegorzewski and K. E. Heusler, J. Electroanal. Chem., 228, 455 (1987) https://doi.org/10.1016/0022-0728(87)80123-7
  28. K. E. Heusler and J. Pietrucha, J. Electroanal. Chem., 329, 339 (1992) https://doi.org/10.1016/0022-0728(92)80226-T
  29. A. Y. Gokhshtein, Electrochim. Acta, 15, 219 (1970) https://doi.org/10.1016/0013-4686(70)90023-X
  30. R. E. Malpas, R. A. Fredlein, and A. J. Bard, J. Electroanal. Chem., 98, 171 (1979) https://doi.org/10.1016/S0022-0728(79)80256-9
  31. R. E. Malpas, R. A. Fredlein, and A. J. Bard, J. Electroanal. Chem., 98, 339 (1979) https://doi.org/10.1016/S0022-0728(79)80273-9
  32. L. J. Handley and A. J. Bard, J. Electrochem. Soc., 127, 338 (1980) https://doi.org/10.1149/1.2129667
  33. M. Seo, T. Makino, and N. Sato, J. Electrochem. Soc., 133, 1138 (1986) https://doi.org/10.1149/1.2108800
  34. M. Seo, X. C. Jiang, and N. Sato, J. Electrochem. Soc., 134, 3094 (1987) https://doi.org/10.1149/1.2100346
  35. M. Seo, X. C. Jiang, and N. Sato, Electrochim. Acta, 34, 1157 (1989) https://doi.org/10.1016/0013-4686(89)87150-6
  36. X. C. Jiang, M. Seo, and N. Sato, Corros. Sci., 31, 319 (1990) https://doi.org/10.1016/0010-938X(90)90126-P
  37. X. C. Jiang, M. Seo, and N. Sato, J. Electrochem. Soc., 137, 3804 (1990) https://doi.org/10.1149/1.2086305
  38. X. C. Jiang, M. Seo, and N. Sato, J. Electrochem. Soc., 138, 137 (1991) https://doi.org/10.1149/1.2085523
  39. M. Seo and M. Aomi, J. Electrochem. Soc., 139, 1087 (1992) https://doi.org/10.1149/1.2069344
  40. M. Seo and M. Aomi, J. Electroanal. Chem., 347, 185 (1993) https://doi.org/10.1016/0022-0728(93)80087-X
  41. M. Seo, M. Aomi and K. Yoshida, Electrochim. Acta, 39, 1039 (1994) https://doi.org/10.1016/0013-4686(94)E0018-U
  42. M. Seo and K. Ueno, J. Electrochem. Soc., 143, 899 (1996) https://doi.org/10.1149/1.1836555
  43. G. Valincius and V. Reipa, J. Electrochem. Soc., 147, 1459 (2000) https://doi.org/10.1149/1.1393378
  44. R. A. Fredlein, A. Damjanovic, and J. O'M. Bockris, Surf. Sci., 25, 261 (1971) https://doi.org/10.1016/0039-6028(71)90246-9
  45. R. A. Fredlein and J. O'M. Bockris, Surf. Sci., 46, 641 (1974) https://doi.org/10.1016/0039-6028(74)90330-6
  46. J.-D. Kim, S.-I. Pyun, and R. A. Oriani, Electrochim. Acta, 40, 1171 (1995) https://doi.org/10.1016/0013-4686(94)00351-Z
  47. S.-I. Pyun, J.-D. Kim, and R. A. Oriani, Mater. Sci. Forum, 185-188, 407 (1995)
  48. J.-D. Kim, S.-I. Pyun, and R. A. Oriani, Electrochim. Acta, 41, 57 (1996) https://doi.org/10.1016/0013-4686(95)00284-L
  49. S.-I. Pyun, Mater. Lett, 27, 297 (1996) https://doi.org/10.1016/0167-577X(95)00292-8
  50. S.-M. Moon and S.-I. Pyun, Electrochim. Acta, 43, 3117 (1998) https://doi.org/10.1016/S0013-4686(97)10194-3
  51. K. Ueno and M. Seo, J. Electrochem. Soc., 146, 1496 (1999) https://doi.org/10.1149/1.1391793
  52. G. G. Lang, K. Ueno, M. Uvari, and M. Seo, J. Phys. Chem. B, 104, 2785 (2000) https://doi.org/10.1021/jp9942116
  53. K. Ueno, S.-I. Pyun, and M. Seo, J. Electrochem. Soc., 147,4519 (2000) https://doi.org/10.1149/1.1394095
  54. M. Seo and Y. Serizawa, J. Electrochem. Soc., 150, E472 (2003) https://doi.org/10.1149/1.1606688
  55. J.-D. Kim, S.-I. Pyun, and M. Seo, Electrochim. Acta, 48, 1123 (2003) https://doi.org/10.1016/S0013-4686(02)00823-X
  56. L. Jaeckel, G.. Lang, and K. E. Heusler, Electrochim. Acta, 39, 1031 (1994) https://doi.org/10.1016/0013-4686(94)E0017-T
  57. G. Lang and K. E. Heusler, J. Electroanal. Chem., 391, 169 (1995) https://doi.org/10.1016/0022-0728(94)03832-N
  58. G. Lang and K. E. Heusler, Russian J. Electrochem., 31, 759 (1995)
  59. I. O. Efimov and K. E. Heusler, J. Electroanal. Chem., 414, 75 (1996) https://doi.org/10.1016/0022-0728(96)04643-8
  60. K. E. Heusler and G. Lang, Electrochim. Acta, 42, 747 (1997) https://doi.org/10.1016/S0013-4686(96)00341-6
  61. T. W. Kenny, W. J. Kaiser, J. A. Podosek, H. K. Rockstad, J. K. Reynolds, and E. C. Vote, J. Vac. Sci. Technol. A, 11, 797 (1993) https://doi.org/10.1116/1.578351
  62. W. Haiss and J. K. Sass, J. Electroanal. Chem., 386, 267 (1995) https://doi.org/10.1016/0022-0728(95)03924-6
  63. H.-J. Butt, J. Colloid Interface Sci., 180, 251 (1996) https://doi.org/10.1006/jcis.1996.0297
  64. W. Haiss and J. K. Sass, J. Electroanal. Chem., 410, 119 (1996) https://doi.org/10.1016/0022-0728(96)04628-1
  65. W. Haiss and J. K. Sass, Langmuir, 12, 4311 (1996) https://doi.org/10.1021/la9602224
  66. H. Ibach, C. E. Bach, M. Giesen, and A. Grossmann, Surf. Sci., 375, 107 (1997) https://doi.org/10.1016/S0039-6028(96)01252-6
  67. W. Haiss, R. J. Nichols, J. K. Sass, and K. P. Charle, J. Electroanal. Chem., 452, 199 (1998) https://doi.org/10.1016/S0022-0728(98)00137-5
  68. W. Haiss, Rep. Prog. Phys., 64, 591 (2001) https://doi.org/10.1088/0034-4885/64/5/201
  69. G. G. Stoney, Proc. R. Soc. Lond. A, 82, 172 (1909) https://doi.org/10.1098/rspa.1909.0021
  70. E. Suhir, J. Appl. Mech., 55, 143 (1988) https://doi.org/10.1115/1.3173620
  71. M. Janda and O. Stefan, Thin Solid Films, 112, 127 (1984) https://doi.org/10.1016/0040-6090(84)90490-5
  72. G. Binning, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett., 56, 930 (1986) https://doi.org/10.1103/PhysRevLett.56.930
  73. W. Haiss, D. Lackey, and J. K. Sass, J. Chem. Phys., 95, 2193 (1991) https://doi.org/10.1063/1.460967
  74. J. Clavilier and N. Van Houng, J. Electroanal. Chem., 41, 193 (1973) https://doi.org/10.1016/S0022-0728(73)80437-1
  75. J. Clavilier and N. Van Houng, J. Electroanal. Chem., 80, 101 (1977) https://doi.org/10.1016/S0022-0728(77)80106-X

Cited by

  1. In situ imaging of electrode processes on solid electrolytes by photoelectron microscopy and microspectroscopy – the role of the three-phase boundary vol.44, pp.3, 2007, https://doi.org/10.1007/s11244-006-0132-4