DOI QR코드

DOI QR Code

Recent Development of 5 V Cathode Materials for Lithium Rechargeable Batteries

  • Published : 2004.02.01

Abstract

This paper deals with the recent development of high-voltage cathode materials of mono- and di- metal ions substituted spinel $LiMn_2O_4$ for lithium batteries. $LiCu_xMn_{2-x}O_4(0{\leq}x{\leq}0.5)$ shows reversible intercalation/deintercalation in two potential regions, $3.9\~43\;and\;4.8-5.0V$ and stable electrochemical cycling behavior but with low capacity. $LiNi_{0.5}Mn_{1.5}O_4$ obtained by a sol-gel process delivers a capacity of 127mAh $g^{-1}$ on the first cycle and sustains a value of 124 mAh $g^{-1}$ even after the 60th cycle. The $Li_xCr_yMn_{2-y}O_4(0{\leq}x{\leq}0.5)$ solid-solutions exhibit enhanced specific capacity, larger average voltage, and improved cycling behaviors for low Cr content. $LiCr_yMn_{2-y}O_4$ presents a reversible Li deintercalation process at 4.9V, whose capacity is proportional to the Cr content in the range of $0.25{\leq}x{\leq}0.5$ and delivers higher capacities. $LiM_yCr_{0.5-y}Mn_{1.5}O_4(M=Fe\;or\;Al)$ shows that the capacity retention is lowered compared with lithium manganate. The cumulative capacities obtainable with Al-substitutted materials are less than those with Fe-substituted materials. $LiCr_xNi_{0.5-x}Mn_{1.5}O_4(x=0.1)$ delivers a high initial capacity of 1$152mAh\;g^{-1}$ with excellent cycleability.

Keywords

References

  1. M. Wakihara and O. Yamamota, Lithium-ion batteries - Fundamental and performance, Wiley-VCH, Weinheim, p. 26. (1997)
  2. H. Kawai, M. Nagata, H. Tukamoto, Anthony R. West, J. Power Sources, 81-82 (1999) 67 https://doi.org/10.1016/S0378-7753(98)00204-3
  3. L. Hernan, J. Morales, L. Sanchez, and J. Santos, Solid State lonics, 118 (1999) 179 https://doi.org/10.1016/S0167-2738(98)00449-4
  4. Y. Idemoto, H. Narai, and N. Koura, J. Power Sources, 119-121 (2003) 125 https://doi.org/10.1016/S0378-7753(03)00140-X
  5. Y. Terada, K. Yasaka, F. Nishikawa, T. Konishi, M.Yoshio, and I. Nakai, J. Solid State Chem., 156 (2001) 286 https://doi.org/10.1006/jssc.2000.8990
  6. T. Ohzuku, S. Takeda and M. Iwanaga, J. Power Sources, 81-82 (1999) 90 https://doi.org/10.1016/S0378-7753(99)00246-3
  7. Y. Ein-Eli, S. Lu, W. Howard, S. Mukerjee, J. McBreen, J. Vaughey, and M. Thackeray, J. Electrochem. Soc., 145 (1998) 1238 https://doi.org/10.1149/1.1838445
  8. X. Wu and S. Kim, J. Power Sources, 109 (2002) 53 https://doi.org/10.1016/S0378-7753(02)00034-4
  9. Q. Zhong, A. Bonakdarpour, M. Zhang, Y. Gao, and J. R. Dahn, J. Electrochem. Soc., 144 (1997) 205 https://doi.org/10.1149/1.1837386
  10. J. M. Tarascon, E. Wang, W. R. Mckinnon and S. Colson, J. Electrcochem. Soc., 138 (1991) 2859 https://doi.org/10.1149/1.2085330
  11. C. Sigala, D. Guyomard, A. Verbaere, Y. Piffard, and M. Tournoux, Solid State Ionics, 81 (1995) 167 https://doi.org/10.1016/0167-2738(95)00163-Z
  12. G. Fey, C. Lu and T. Kumar, Materials Chemistry and Physics, 80 (2003) 309 https://doi.org/10.1016/S0254-0584(02)00522-9
  13. K. Hong, Y. Sun, J. Power Sources, 109 (2002) 427 https://doi.org/10.1016/S0378-7753(02)00101-5

Cited by

  1. Neutron diffraction and electrochemical studies on LiIrSn4 vol.179, pp.2, 2006, https://doi.org/10.1016/j.jssc.2005.10.026