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Fundamental problems for an elastic plate weakened by

a curvilinear hole

M.A. Dowaikh

Abstract: Muskhelishvili’s complex variable method has been applied to
derive exact and closed expressions for Gaursat’s functions for the first and second
fundamental problems of the infinite plate weakened by a curvilinear hole which is
conformally mapped on the domain outside the unit circle by means of rational

mapping function. The hole having three poles. The previous work of the authers in
this domain is considered as special cases of this work.

1. Introduction:
problems dealing with isotropic homogeneous perforated infinite plate have been
investigated by several authors. Some authors used laurant’s theorem to express each
complex potential as a power series, (see [1.2.3]), others used complex variable method of
Cauchy integrals, (see [3.4]).
Muskelishvili, in his work [4] proved that, the first and second fundamental
problems in the plane theory of elasticity are equivalent to finding two analytic functions

¢, (2) and v, (z) of one complex argument z= x+ iy, 1 = /-1, -

These functions must satisfy the boundary conditions:

K80~ 180 - ¥, =/ @), (1.1)
where k'= -1 and f{(t) is a given function of stresses for the first fundamental

problem, while ey At >1and f(t) =24 g(t), is a given function of displacements, for the
A+
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second fundamental problems, A, u are called the Lame’s constants, x is called

Muskhelishvile’s constant, and t denotes the affix of a point on the boundary.

In terms of z= cw (£). ¢ > o, w'({) does not vanish or become infinite for |C |>1 ,
the infinite region outside a closed contour conformal by mapped outside the unit circle y.

The two complex functions of potential ¢, (z) and y(z) take the form (4).

G@D=- X e HO) (1.2)
27 (1 +x)

vi@= 20 e oy, (1.3)
27(1+ x)

where X, Y are the components of the resultant vector of all exnternal forces acting
on the boundary, and I', " are complex constants.
Generally, the two complex functions ¢(§), w((), are single — valued analytic

functions within the region outside the unit circle and ¢ () = y () = 0. For the first

fundamental problem, it will be assumed that r=I" andX=Y=0.

Muskhelishvili [4] used the transformation
z=c(+m"), >0 (1.4)

for solving the problem of stretching of an infinite plate weakened by an elliptic
hole. England [1] considered an infinite plate weakened by a hypotrochoid hole,

conformally mapped onto a unit circle | ¢ |=1 by the transformation mapping

20 =c(C+m&™), ¢>0 ,0<m>1, (1.5)

n
where z'(§) does not vanish or become infinite outside the unit circle y . and he
solved the boundary value problem by suing Laurant’s theorem.
In previous papers [5, 6, 7], the complex variable method has been applied to solve

the first and second fundamental problems for the same domain of the infinite plate with
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general curvilinear hole conformally mapped on the domain outside a unit circle by using,

respectively, the rational mapping functions:

z=c {+m{ 0,0/ < 1 (1.6)
1-nC1
z=c ¢emilemet o>, ik 1 (L.7)
l—né’wl ’
and
-1 -2 -3
z=c M5 Mg THme T 650, |nj<l. (1.8)
a1 4
1-nd

In this paper, the complex variable method has been applied to solve the first and
second fundamental problems for the same previous domain of the infinite plate with a
general curvilinear hole C, with three pales, conformally mapped on the domain outside a

unit circle y by the rational mapping functions

fam T am im0, mEmEN)  (19)
2y =e— 2 3

A-n & H=n ¢ Ha-ng™h

where ¢ > 0, m’s and n’s are real parameters restricted such that z'({) does not vanish or
become infinite outside y. The interesting cases when the shape of the hole is an ellipse,
hypotrochoidal, a crescent or a cut having the shape of a circular arc are included as special
ones. Many new cases, also can be derived from the work. All the previous works
mentioned in this domain, are considered as special cases of this work. Holes corresponding
to certain combinations of the parameters m’s and n’s are sketched (see figs 1,2,3,4). Some
applications of the first and second fundamental problems for the plate with a curvilinear

hole of Eq. (1.9) are investigated
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2. Method of solution:

The rational mapping z = cw (). ¢ > 0, maps the boundary C of the given region

occupied by the middle plane of the plate in the z—plane onto the unit circle A in the {-plane.

Curvilinear coordinates (p , 8 ) are thus introduced into the z — plane which are the maps of

the polar coordinates in the C - plane as given by £ = pe®0<0<2m.

Substituting w(() into (1.1), we have:

2.1
4 ((ew($)) - —= LN Sy o B (ewQ)- 2.1
w'(S)
Using Eq. (1.9), the expressions #(¢ ') can be written in the form
w'($)

we™h 2.2)

il Y+ )
where

3 h
a@) = k
k=161,

3
1— _
{n4+ s, maen e -y
i k J=1 k+#j
J=1"’ J (2.3)

=
3 .3

{u 3 (3—j)mjnllc+1~ 5 ! _[.

j

- -
J=1 J=1lmnn,

and B (¢) is a regular function for | { | > 1

Using (1.2), (1.3) and (2.2), the boundary condition (2.1) can be written in the form.

K'9(0) - a(0)p (@) -y, (@) = 1,(0) (2.4)

where o = € denotes the value of ¢ on the boundary of the unit circle y, while.

V/*(Z) =)+ B (S
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£ = FQO-CK'T¢ +cr¢ 4 NOfa) + BO)

- X-iY
Ney=cT- 27(1+ %)
and
FO) = flem?))- (2.5)

Assume that the derivatives of F (o) must satisfy the Holder condition, i.e.

F(o)) - Floy) s lo)-o, ', O is constant, 0< y<1 (2.6)

our aim is to determine the two functions ¢(£) and y(() for the various fundamental

problems, from Eq. (2.4). For this, multiplying both sides of (2.4) by 1 do , then
2m o~¢

integrating the result around the unit circle y and evaluating the integrals thus formulated by

residue theorems, we have

* ' T 3 h.N(n:)
Ko +—— (2W©@  ag=cr¢ a3 L (2.7).
2z ¥ o-¢ J=l §-n;
where
A(C)=—L, OEC(_I_U)I oY F(o)do, L] >1 (2.8)
27 v=0

Using (2.2), we have

1 Ia(a)%,azcg hibj 2.9)
2my o-¢ J=1 nj-§

where b’s are complex constants to be determined.
Using (2.9) in (2.7), we get
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% Tx 3
K@) =A)-cT 1 e § (ij+N(nj)) (2.10)
J=1

n.
J
Differentiating (2.10) with respect to {, and using the result in (2.9), we obtain

ck*bj +cn§r*+djhj(cbj +N(nj))=_A'(n_j) (2.11)

where
d; = n3-nm)?, 1k=1,23, j=k

Hence, we have

*
kE:.—h;

, J de,kEJ (2.12)
j 2 2
ol Hidj )

where

; a2 .
Ej=-A(nj)=cl nj~hid 4 Nn)

Also, from (2.4), the function w(d;) can be determined in the form

KT we™h hi¢ 1 (2.13)
- Y+ B()-B’
w($) c WO — 9 )+ Jl 1—njg¢*(”1 )+ B({)
where
#($) =4O+ N()
B(;)=L1Mda
T, o-¢
J
and:
(2.14)

where the integrals are taken over the unit circle y.
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3. special cases

(i) Forn’s=0, ¢ < m; <Ly j =1,2,3, we get the rational mapping function.

2= +me emyr T amye ™, 3.1).

The physical interest of mapping (3.1) comes from the following.
§y) Acircle of radiusc :m;j=0 ,1¢;<3
3] Anellipse mp=m;=90
3 A square with rounded corners with diagonals parallel to the x and
y axis m; = m; = 0, my = about 0.1. The same square with its sides
parallel to the axis m;=m;= 0,
m, = about -0.1.
@) An ovaloid m; = 0, m; =about 0.3 , m; = -0.05
5 A triangle m; =m; =0
(ii) For m; = m3 = 0 , m; = -1, the boundary C degenerate into a circular cut with
three poles , and for m, takes values near -1  m, = m; = 0, the edge of the hole resembles
the shape of a crescent. Many interesting cases for the reader can be derived and used
according to the technology work.

4. Examples:

In this section, we will discuss, some examples for the first and second fundamental

problems, when the external and applied forces takes different cases.

4.1: Curvilinear hole for an infinite plate subjected to a uniform tensile stress:

Fork = -1, r=£,r*:—§e_2i9,0£¢9£27z,
4

and X =Y = f = 0, we have an infinite plate stretched at infinity by the application of a
uniform tensile stress of intensity P, making an angle @ with the x-—axis. The plate

weakened by a curvilinear hole C having finite poles which is free from stress.



38 M..A. DOWAIKH

Gaursat’s functions (2.10), (2.13) take the form

hO. .
#O) =%[¢_1 exp(2i0) + % #} 4.1)
e
-1
3 hytny e 42
()= CP;‘ W(g b+ 3 L2 (4.2)
W) [
where
é*nfcosw n? sin26
Q.:
J I-hd; L+hid;
and
4.3)

8,04 )+ L

4.2: Curvilinear hole having three poles the edge of which is subject to a uniform
pressure

. *
Fork =-1,X=Y=I'=I" =0 and f(t) = Pt,
where P is a real constant, the formulas (2.10), (2.13) become.

3 pemmIy- hid ;)
W= 3 j o Jk 4.4
kL - O )
and
he o _
w0)= " Dy cpz (n+ & )+2 L gh. (4.5)
w(0) 1 Tong

Hence (4.4) and (4.5) give the solution of the first fundamental problem when the
edge of the hole is subject to uniform pressure P . Putting in (4.4) and (4.5) —iT instead of P,
we have the first fundamental problem when the edge of the hole is subject to a uniform
tangential stresst T.
4.3: Uni- directional tension of an inf nite plate with a rigid curvilinear centre.

For " =x, r_g r = ( Ye X y =0, F(t) = 2iPet, we have the two complex

function,
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@)
n 0
—x6)= L0 veue 3 LT S e (4.6)
R (= Ox+hyd ) 2 kA nj—q
3 xp g weh hie o1 (4.7)
Y()=2 (B rope, 7 4 -
©) wuejgl A R _1 — §¢*(nj)
where
2 2.
+2n* cos26 > sin 28
Qg.zlzzx n’j cos —i njsin ’
K 2xrhyd; )y x-hd g
and
P
#(O) = 4 +% : (4.8

Therefore, we have the case of uni- directional tension of an infinite plate with a
rigid curvilinear center. The constant € can be determined from the condition that the

resultant moment of the forces acting on the curvilinear center from the surrounding
material must vanish , i. e

M =Re H\y(g) 20 }w‘@)dg}:o' 4.9)

Hence, we have

P(1+x)(Z n .+ N)sin 26
(2,7 (4.10)
4ull+3 n; +L]
where
2.2
. % hjnjnk
Jk=1 (1- nnk) (x- hd )
and
6 57
L3 k+m,nk - 4.11)

Jk=l (1-n nk) (x+hjdj’k)

Case 1: Bi —axial tension with k' =x, X=Y =0, I'=T= P , =0 and f(t) = 2 g(t) under

the same condition of example (4.3), one obviously will have € = 0 and the two complex

functions are
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Iy
“0 T8 T .
=2t e M gy 3 gt *13)
w@ *OT T g
where
=8+ (4.14).

Case 2: When the curvilinear centre is not allowad to rotate.

Under the condition of the preceding example (4.3) the rigid curvilinear kernel is
restrained in its original position by a couple which is not sufficient to rotate the kernel ,
then £=0.

Hence, the two complex functions are

(2)
kO
)= 2;9§ cP.3 jok (4.15)
2 jk=1 ”j_g
and
=D hg
_xep -1 _w@g 7 J -1 (4.16)
w($) p ¢ W) ——— &)+ l_nquig(nj )

where Qj(i) and é (€) are g iven by (4.9).
r

The resultant momemt is given by

sin26
X = WA= - nnk)(X h

_eprgis x){ 3,3 h,nfnk @)
i)
Case 3: When a couple with a given moment acts on the curvilinear hole:
We assume that the stresses vanish at infinity, under the same conditions of example
(4.3), the complex functions take the following form

#E) = 2icu € % M (418)
jk=1 (¢ - nk)(x +hjdj k)

w¢™h g hig 4
SO tOE T J§¢(nj)

w(§)=2icue[% n~+§'l) (4.19)
J=1 J

where
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£ = " (4.20)

3 ,
2mep|l+ ¥ no+L
A

and L is given by (4.11)

4.4: The force acts on the centre of the curvilinear hole.
In this case, it will be assumed that the stresses vanish at infinity. It is easily seen

that the kernel does not rotate. In general, the kernel renains in its original position.
Hence, one assumes "= 1"* = f({)=0 and k' = x.

Gaursat’s functions are

. 2.2
ch, | xh,d, (X+iD) h2d* 4.21)
M=o 3 A e LA -{n L L }(X_iY)
x(L+x) jhk=L §=njt e(x - hjdy ) o(x” ~hjd% 1)
he o weh 4.22)
w(y=3 —IL 1y i
%) 2 1-nj§¢“‘("1) O % (&)
where
P €. S 4.23)
() =¢'() Y

Therefore, we have the solution of the second fundamental problem in the case,

when a force (X, Y) acts on the center of the curvilinear kernel.
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