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NEUTRAL INTEGRODIFFERENTIAL CONTROL SYSTEMS WITH
INFINITE DELAY IN BANACH SPACES

K.BALACHANDRAN AND T.NANDHA GOPAL

ABsTrAcT. Sufficient conditions for the controllability of neutral functional integrod-
ifferential systems with infinite delay in Banach space are established by means of
the Schaefer fixed point theorem.

1. INTRODUCTION

Several authors have investigated the neutral functional differential equations in
abstract spaces [3,5,7,9,10,12]. These type of equations occur in the study of heat
conduction in materials with memory and many other physical phenomena. So it is
interesting to study the controllability problem for such systems. There are several pa-
pers appeared on the controllability of nonlinear systems in infinite dimensional spaces
[2]. Balachandran and Anandhi [1] discussed the controllability of neutral functional
integrodifferential systems in abstract phase space with the help of Schauder’s fixed
point theorem. Recently Fu [6] studied the same problem in abstract phase space by
utilizing the Sadovskii fixed point theorem. Wang and Wang [14] discussed the con-
trollability of abstract neutral functional differential systems with infinite delay using
the Schaefer fixed point theorem. The purpose of this paper is to study the controlla-
bility of neutral functional integrodifferential systems with infinite delay by using the
Schaefer fixed point theorem.
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2. PRELIMINARIES

Consider the following neutral functional integrodifferential systems with infinite
delay

(1)—[m(t) — gt xt)] - Ax(t)—}—Bu(t)+f<t,:ct,/0tq(t,s,:ps)ds), te0,b] = J,
| zog = ¢EB,

where the state z(-) takes values in Banach space X endowed with norm |-|, the control
function u(-) is given in L2(J,U), a Banach space of admissible control functions with
U as a Banach space. A is the infinitesimal generator of a Cj semigroup of bounded
linear operators T'(t), t > 0 on X, B is a bounded linear operator from U into X, where
g:IxJIxB—-X,f:IJxBxX — X and g:J x B— X are appropriate functions.
The histories z; : (—00,0] — X, 2¢(6) = z(t + ), 6 < 0, belong to some abstract phase
space B, that is, a linear space of functions mapping (—o0,0] into X endowed with a
semi norm || - || in B [8,9,11]. Throughout this paper, we assume that B satisfies the
following axioms:

: (A1) If z: (—o0,0+a) — X, a > 0, is continuous on [o,0 +a) and z, € B, then
for every t in [0, 0 + a) the following conditions hold:
: (i) ¢ isin B;
2 (it) [e()] < Hllze|s;
: (iii) |zl < K(t — o) sup{|z(s)| : 0 < s <t} + M(t — 0)||zs| 5,
where H > 0 is a constant; K : [0,00) is continuous, M : [0,00) — [0,00) is
locally bounded, H, K and M are independent of z(-).
: (A2) For the function z(-) in (4;), z; is a B-valued continuous function on
[0,0 + a).
: (A3) The space B is complete.

For brevity let us take || - |z = || - ||. We need the following fixed point theorem.
Schafer’s Theorem[13]: Let S be a convex subset of a normed linear space E and
0€S. Let FF: S — S be a completely continuous operator and let

((F) = {x € S : AFz = zx for some X € (0, 1)}

Then either ((F') is unbounded or F has a fixed point.
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If z(t) is a mild solution of system (1) then it can be written as [5,7]

(2)

() = T®[S0) - g(0,0) + glt, z0) + /0 AT (t - 5)g(s, z,)ds

+/OtT(t—s)

.CCO:¢.

(Bu)(s) + f(s,xs, /OS q(s,'r,xT)dT)] ds, t € J,

We say that the system (1) is said to be controllable on the interval J if for every
initial function ¢ € B and z; € X, there exist a control u € L?(J,U) such that the mild
solution of (1) satisfies z(b) = z7.

Assume the following hypotheses:

: (A4) A is the infinitesimal generator of a compact semigroup of bounded linear

operators 7'(t), t > 0 on X and there exist a constants M < 1 and M7 > 0 such
that

|T(t)] < M and |AT(t)] < M.

: (As) The linear operator W : L?(J,U) — X, defined by

b
Wu = /0 T (b — s)Bu(s)ds,

has an inverse operator W‘l, which takes values in L2(J, Q / ker W and there
exist positive constants Ms, M3 such that |B| < Ms and W1 < Ms.

: (Ag) (i) The function g is completely continuous and such that the operator

G : B — B defined by (G¢)(t) = ¢(t, ¢) is compact.
: (#¢) There exists ¢ and ¢ such that K¢ <1 and [g(t,¢)| < cil|d|| +co,t €
J, ¢ € B, where K = max{K(t) :t € J}.

: (A7) (4) For each t € J, the function f(¢,-,-) : Bx X — X is continuous and for

each (z,y) € B x X, the function f(-,z,y): JJ — X is strongly measurable.
: (it) For each (t, s) € J x J, the function ¢(t,s,-) : B — X is continuous and
for each x € B, the function ¢(-,-,z) : J x J — X is strongly measurable.
: (493) For every positive integer k, there exists ax(-) € L'[(0,b)] such that

Sup{|f(t,m,y)| el Jy) < k} < og(t) for t € J a.e.,

: (iv) There exist an integrable function m : J — [0, 00) and a constant a > 0
such that

lg(t, s, 2)] < am(s)(l|zl]), te J, € B

where g : [0,00) — (0, 00) is a continuous nondecreasing function.
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: (v) There exists an integrable function p : J — [0, c0) such that
|f(t,z,9)| < p@)Q||lxl + [yl), te€J, z€B, ye X

where € : [0,00) — (0,00) is a continuous nondecreasing function.

: (vi)
b o ds
h /Om(S)ds</o T
¢ = {0l + KU+ o] + )+ ca+ cab+ MNE),

N K K
M = max{M(t) te J},m(t) = max KMicl , Mg(t),am(t) , teJ,
1—K61 1—K61

N = M2M3{|$1| + M(|$(0)] + cilloll + c2) + callapl + 2

+M, /Ob(quTH + ca)ds + M /Ob P(T)Q<H:CTH +a /OT m(G)Q"(“MH)dg)dT}'

3. MAIN RESULT

Consider the mapping ® defined by
t

a(t) = TH[H0) - 9(0,8)] + glts 1) + / AT(t — 5)g(s, 25)ds

(Bu)(s) + f(s,xs, /08 q(s, T, (L‘T)dT):l ds, t € J,

t
(3) + / T(t— s)
0
and define the control function u(t) as

~ b
u(t) = W“l{xl — T(b)[¢(0) — 9(0, )] — g(b, zp) — /O AT(b— s)g(s, z5)ds

(4) —/Ob T(b— s)f(s, Ts, /OT q(T,G,:Eg)dG)ds}(t), te

We shall show that the operator ® has a fixed point, which is then a solution of system
(1). Obviously, (®z)(b) = z1, which means that the control u steers the system from
the initial function ¢ to z1 in time b, provided that the nonlinear operator ® has a
fixed point. In order to apply the Schafer theorem we consider the equation

(5) z(t) = Az(t), 0<A<1.

Lemma 3.1: For system (2), there is a priori bounds K > 0 such that ||z;| < K,
t € J, where K depends only on b and on the functions m(-) and Q(-).
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Proof: Now

#) = XT[00) - 00.0)]+ da(t.o) + A [ AT(E= s)g(s.2.)ds
[ 1ie- n)BW-l{xl — T(4)9(0)  9(0, )] — 90, 2)

_/OtAT(b—t)g(t,ivt)dt—/ObT<b_T)f<T’$T’/O

(6) +A /OtT(t — S)f(s,xs, ‘/Os q(s, 7, QL‘T)dT)dS, ted,

$0=¢.

T

q(t,0, wg)dH) dT} (n)dn

Then, we have
t
O] < M{GO)] + callg] + cal + erllze] + 2 + My / (callzll + e2)ds
0

S
+MNb+M/ | +/ m(r)Qo(llz |)dr )ds, t e,
from which and Axiom (A;)(iii) it follows

[l K(t)sup{le(s)] : 0 < s <t} + M()l|4]
Ksup{lz(s)] : 0 < s <t} + M|l

M| + E{M{$(0)] + c1l|g] + 2] + ez + Msczb + MNb |

INIA

IA

+Kcy sup ||x8H+KM1c1/ ||| dr

+EkM / Ol + [ am(r)(lerl)ar)ds. te

Let pu(t) = sup{||zsl] : 0 < s < t}, then the function u(¢) is continuous and nondecreas-
ing in from Axiom (A3), and we have

ult) < M|o]l+ K{M{6(0)] + crllg] + o) + ez + Mz + MNb}
~ _ t _ ¢
+Rep(t) + KMy / p(rydr + KM [ p()2 ()
0 0

+ /OS ozm(T)Qo(u(T))d7'>ds, ted,
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from which it follows
R: M 1C1

KM t
u) < ot 30 [umar+ LH on(ue

+/08 Oém(T)Qo(,LL(T))dT>dS, teJ

Denoting the right-hand side of the above inequality as v(t), we have ¥(0) = ¢, u(t) <
v(t), t € J and

’ I?M C1 I?M t
YO = TN+ f(qp(tm () + o [ m(e)(utr)ir)

KM KM
< Al,cl’y(t)-i- +a/ m(7)Qo(y d)
1—K01 1——K61

1
1- I?C1
Let w(t) = v(t) + ozfg m(7)Q(y(r))dr. Then w(0) = v(0),v(t) < w(t) and
w'(t) = () +am(t)Qo(1(t))

~ M
< KMc 7()+M—p(t +a/ m(7)Qo(y dT)}, teJ

< _11{_]\/‘[}%0011 !’y(t) M1C1 +a/ m(7)Qo(y )dr)} +am(t)Qo(y(t))
KM KM
< TR + T o p(OR0(0) + am(B(w(?)

< () {wt) + Qo(w(®) + Q) |

which implies

w(t) ds
/ / m(s)ds < / , ted
w(o) §+ Qs +Qo e s+ Q(s) + Qols)

This inequality implies that there is a constant K such that v(¢) < K, ¢ € J and hence,
lz:|| < wu(t) <v(t) < K, t € J, where K only depends on b and on the functions m(-)

and Q(-).

Now, we introduce the space B of all function z : (—oo,b] — X such that zp € B
and the restriction z : [0,b] — X is continuous. Let || - ||, be a semi norm in By defined
by

Izlls = Ilz0]] + sup{|z(s)| 0<s< b}, 2 € By,
For é € B, we define gﬁ by
B(t) = ¢(t), —00 <t < 0; $(t) = T()$(0), 0<t<b,
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then ¢ € By. Let z(t) = y(t) + $(t), —oco < t < b, then it is clear that z satisfies (2) if
and only if y satisfies

y(t) = =T()g(0,0) + glt,ye + ) + /0 AT(t — 5)g(s,ys + ¢s)ds
+/0 T(t 1{3:1 — T(b)[$(0) = g(0, $)] — g(b,ys + Ps)
b
/0 AT 5 yYs + ¢s)
b T
/O T(b s ys+¢s,/0 q(T,07y9+$e)d9)d8}(n)dn

-+

t E]
/ T(t—3s)fls y8+¢s,/ q(s,T,yT-l-ng)dT)ds, tedJ,
0

0

<

Yo =

bl

Let BY = {z € By : 20 = 0}, By = {z € BY : |2(¢ ()|< ,t € J} for some k > 1.
Clearly, BO is convex and closed, and By, is uniformly bounded Define ¥ : BO — BO by

(Ty)(t) = 0,-00<t<0

(Ty)(t) = —T()g(0,¢) + gt, ye + 6r) + /Ot AT (t — s)g(s,ys + bs)ds
+ /Ot Tt - W)Bw_l{wl —T(b)[6(0) = 9(0,6)] — g(b, o + )
b
—/0 AT(b - S)Q(Sa Ys + (;ASS)dS
b T
_/0 T(b - 8)f<5a Ys + (53’/0 Q(Ta 07 Yo + é@)d0>ds}(n)dn
(7) -I-/O T(t— s)f(s,yS + bs, /08 q(s, 7, yr + d;T)d7'>ds, teJ,

Lemma 3.2: The operator ¥ : Bg — B,? is compact and continuous.

Proof: First we show that ¥ maps Bj into an equicontinuous family. To this end,
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for any y € By, let 0 < t; < t3 < b, then

[(Wy)(t1) — (Yy)(t2)|
< T(t) = T(t2)llg(0, )| + [g(t1, yer + bty) — g(t2, Yz + )|

t1
1 / Tt — 5) — T(tz — )lg(s, ys + $s)ds|

+l AT(tz — 8)g(s,ys + bs)ds|
+|/ 1 T(t; — T(ty — )]Bw‘l{fm — T(b)[¢(0) — g(0,9)]
~ b ~
—ma%+¢w—/"Amb—@m&%+¢gw
0

— /Ob T(b— s)f(s, Ys + b, /OT q(1,0, 90 + <230)d9>d3}(77)d77|

to

+ [ Tty —n))BW {fvl ~T(0)[$(0) - 9(0,9)]

t1

A b A
—g(byyp + p) — /0 AT (b — s)g(s,ys + ¢s)ds

—/ObT(b—— s)f(s,ys + dgs,/OT q(7,0,yg +Q30)d‘9>d3}(77)d77|

11 R s R
=9 =Tl = 0 (5.9 + b [ als,0r +80)ar)as
0 0

t2

T =) (st G [ oty + 0 )

t1

IA

T (t1) — T(t2)[19(0, #)| + 1g(t1, s, + be,) — 9lt2, Yes + )]
t1

| AT = 5) = T2 = 9)ll(eallys + Os| + c2)ds

+ [ |AT(ty — s)|(c1llys + 5| + c2)ds
t1

A 1 IT(tr —n) = T(t2 - U)!MzMs{lwﬂ + M{|$(0) - g(0,9)]

b b T
terllys + doll + e + M, / (c1llys + oll + co)ds + M / / ak/w)dedf}dn
0 0 1]
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+/ 1Tty — n)yM2M3{ |z1| + M[|6(0) — 9(0, 8)]]

t1

b b T
+ellys + dul| +02+M1/ (c1llys + &5l +02)d3+M/ / Oék'(e)dodT}d"?
0 o Jo

®) + /0 Tt — ) - T(ta — )| /O o (r)drds + /:Z\T(tg—s)l /O o (7)drds

where k' = k* + asup,e(o 5 m(s)Qo(k*), k* =k + MEK|¢(0)] + M||¢|| (note that

lys+0sl < llysl+l16sll < K supgeres y(r)|+M yol|+ K supoci<s [T(T)$(0)|+M | ]| <
K+ MK|6(0)] + Mlg]).

The right-hand side of (8) is independent of y € By and tends to zero as to —t; — 0,
since g is completely continuous and the compactness of T'(t) for ¢ > 0 implies the

continuity in the uniform operator topology. Thus, ¥ maps By, into an equicontinuous
family of functions.

Next, we show that WU By, is compact. Since we have shown that ¢ By, is equicontinuous
collection, it is sufficient by Arzela-Ascoli’s theorem to show that ¥ maps By into a

precompact set in X. Let 0 < t < b be fixed and ¢ a real number satisfying 0 < € < t.
For y € By, we define

(Tey)(t)

= - T(t)g(oa ¢) + g(t — € Yt—e + &t—e) + /0 AT(t - S)Q(S, Ys + (Z)s)dS

+ /OH T(t—n)BW™! {m — T(5)[$(0) — 9(0,8)] — g(bys + &)
/0 AT(b — 5)9(5, s + Be)ds
b r
_ /0 T(b— s)f(s, yp + &b,/o q(7,0,y9 + @e)df’) dS}(n)dn
J

T(t— S)f(sa Ys + s, /Os q(s, 7, yr + ¢E7-)d7'>d3

= - T(t)g(ov ¢) + g(t — € Yt—c + Qgt—e)
t—e
+ T(e) [ AT(t—s—€)g(s,ys + bs)ds
0
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t—e o
+ T(e) /0 T(t—n-— E)BW—I{l’l —T(b)[¢(0) — 9(0,9)]
-~ b ~
— gt ) - /0 AT(b— 5)9(5, ys + bo)ds
b . T .

- / T(b - 3)f<57 Ys + ¢87/ q(T’ 97 Yo + ¢6)d9)d3}(77)d"7

0 0

+ T(e) /Otﬁe Tt —s— e)f(s, Ys + Gs, /OS q(s, 7, yr + (Z)T)dT)dS.

Since T'(t) is a compact operator, the set Y¢(t) = {(¥.y)(t) : y € By} is precompact in
X for every € , 0 < € < t. Moreover, for every y € By we have

[(Wy)(t) — (Tey) (2)]

< loltiye+ b0 =t~ et bl + [ IAT( = s)g(s. v+ o)l

t ~
+/t Tt - n)|M2M3{|$1| + M|[¢(0) — g(0,8)| + 9(b; yp + )]

—€

b R b T
+M1/0 !g(s,ys+¢s)rds+/0 lT(t—s)l/O ak/(G)des}dn

¢
+/ |T(t — s)|ogrdrds.
t

—€

Clearly, |(Ty)(t) — (Ty)(t)| — 0 as e — 0. Therefore, there is a family of precom-
pact sets which are arbitrarily close to the set {(Ty)(¢) : y € Bg}. Hence, the set
{(Ty)(t) : y € By} is precompact in X, which is the desired conclusion.

Next we prove that the operator ¥ : BY — B is continuous. Let {yn}n>1 C By
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with y, — ¥y in Bl?. We have

1(Pyn) (@) — (Py) ()]l
< gt yn, + ¢e) — g(t,ye + )|

t ~ A~
+ [ AT = 5)lg(s,m, + 62) = g, + B)lds
t b R R
+/ lT(t - 77)|M2M3{M1/ |9(5ayns + ¢s) - g(s,ys + ¢s)kds
0 0
b R T R
+M/0 |f(3ayns + ¢Sa/0 q(7,0,yny + d)@)de)
—F(sys+ e [ 9, be)db) |d d
P50+, [ atr 8,00+ do)as) T}(n) y

+/Ot T(t - S)Hf(s,yns -I—QASS,/OSq(S,T, . +c7>¢)dr>

s
_f(says + ¢sa/ q(s, 7,y + ¢T)d7>|ds — 0 as n — oo.
0

Thus ¥ is continuous.
Theorem 3.3: Assume that (4;)—(A7) hold. Then the system (1) is controllable on J.

Proof: Let ((¥) = {y € B) : y = AUy, A € (0,1)}, where the nonlinear operator

¥ is defined by (7). For any y € ¢(¥), the function z = y + ¢ is a mild solution of
system (1), for which we have proved in Lemma 3.1 that ||lz:]| < K, t € J, and hence
from Axiom (A;),

lylle = llyoll +sup{|y(t)| : 0 < ¢ < b}

sup{|y(t)] : 0 <t < b}

sup{|z(t)| : 0 < ¢ < b} +sup{|$(t)| : 0 < t < b}
sup{H ||z¢|| : 0 <t < b} + sup{|T(¢)¢(0)| : 0 <t < b}
HEK + M|¢(0)).

IAIA A

From Lemma 3.2 it follows that ¥ is completely continuous in B,?. Therefore, it follows
from the Schaefer theorem that the operator ¥ has a fixed point z € BY. Let z(t) =

z(t) + qg(t), t € (—o0,b]. Then z is a fixed point of the operator ®. Hence, the system
(1) is controllable on J.
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4. EXAMPLE

Consider the partial neutral integrodifferential equation of the form

t 2u(t, x
% [U(t, x)— / b(s —t)v(s, x)ds} = 8—8(55—) + u(t,x)

—0o0

t s
9 + / a(t,z,s — t)F(v(s, x),/ 9(s, 7, vT)dr)ds,O <z<mtel|0,b=J
—00 0
v(t,0) = ov(t,7)=0,t>0
v(t,z) = Y(t,z), —00<t<0, z€l0,n]

Let X = L?[0,n] endowed with usual norm | - | and let u(t)(z) = u(t,z) and be such
that w € L?(J,U) with U C J. Define A : X — X by Aw' = w" and

D(A) = {we€ X :w,w'are absolutely continuous, w” € X, w(0) = w(n) = 0}

It is well known that A generates an analytic semigroup 7'(t), t > 0 on X and (A4)
holds [4,10]. Let v < 0 and assume that

: (i) The function b(6) > 0 is continuous in (—oo, 0], ffoo b2(8)df < oo and K¢y <

1 where K = ¢, ¢; = 5—71 fBoo b2(0)d6.

: (ii) The function a(t,z,0) > 0 is continuous in J x [0,7] x (—00,0] and
ffoo a(t,z,0)dd = m(t,z) < co.

: (iii) The function g(-) is continuous such that 0 < g(t,s,z) < Qo(|z|), where
Qo(+) is positive, continuous and nondecreasing in [0, o).

: (iv) The function F(-) is continuous such that 0 < F(v1,v2) < Q(|v1]| + |val),
where (2 (-) is positive, continuous and nondecreasing in [0, 0o).

: (v) There exists an inverse operator W' which takes values in L?[J,U]/KerW
‘such that Wu = fob T(b— s)u(s)ds.

Take B = C,, which is defined as
¢ = {9 € C((~00,0], X) - lim () exists in X}, veR,
and let
I6lly = sup{ ()] : ~00 < 6 < 0} for ¢ €C,.

Then (Cy, ||-|ly) is a Banach space which satisfies (A;)—(As). For (¢,) € [0,b] x C.,,
let ¢(0)(z) = ¢(6, ), (6,z) € (—00,0] x [0, 7], v(t)(x) = v(t, ),
0

4(t,6)(x) = / b(r)(r, 2)dr,

-0
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0

ft.o.0)@) = [

—00

a(t, a:,T)F<¢>(T, z), /OT P(T, G,Ug)de) dr.

Then the system (9) can be reduced to the abstract equation given by

d t
E[v(t) - g(t,vt)} = Au(t) +u(t) + f(t,vt,/o q(t,s,lvs)ds>, ted

(10) upg = @€ C,y.
Under the hypotheses as above (As), (4¢)(¢) and (A7)(4)(i%), hold and
l9(t,8)| < Cillolly, la(t,s,v)| < amai(s)Qo(lI¥[l,),

where m(t) = /7 max{m(t,z) : 0 <z < 7}.
Further, suppose that

b 00 d
/ mi(s)ds < / ” ;
0 ¢ S+ Q0o(s)+MN(s)

¢ = Mol + M(6(O)] + cally) + AN,

where

KMie;, KM
myi(t) = max 19 ) 11(3) ,am(t)
1-Keg 1-Ka
and N depends on ¢, f and ¢g. Then from Theorem 3.3, the system (9) is controllable
on J.
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