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SUPERCONVERGENCE OF FINITE ELEMENT METHODS FOR
LINEAR QUASI-PARABOLIC INTEGRO-DIFFERENTIAL
EQUATIONS

QIAN LI, WANFANG SHEN, JINFENG JIAN

ABSTRACT. We consider finite element methods applied to a class of quasi para-
bolic integro-differential equations in RY. Global strong superconvergence, which
only requires that partitions are quasi-uniform, is investigated for the error between
the approximate solution and the Sobolev-Volterra projection of the exact solution.

Two order superconvergence results are demonstrated in W#(Q) and Lp(Q), for
2<p<oo.

1. Introduction

Assume that € is a bounded domain in R? with piecewise smooth boundary 952.

Consider the following initial boundary value problem of linear quasi-parabolic integro-
differential equation

,

ur = V-{a(t)Vus + b(t)Vu + /t c(t, )Vu(r)dr} + f(z,t), in Q x (0,7T],
0

u(z,t) =0, on 00 x J, J=[0,T],

—

L u(z,0) = up(x), in Q.

(1.1)
Where a(t) = a(z,t), b(t) = b(z,t), c(t,7) = c(t,7,z), f, uo are known functions
and bounded together with their derivatives up to certain orders as far as the ensuring
analysis requires, and a(z,t) satisfies

0 < ap < a(z,t) < a1, (z,t) €2 x[0,T], (1.2)
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for positive constants ag, a;. The existence and uniquess of the solution of (1.1) have
been considered and analyzed by Cui[l] .

Let L,(R) and W™P(Q), H™(Q) = W™?2(Q), for any integer m > 0 and 1 < p < o0,
denote the usual Lebesgue and Sobolev spaces respectively. Lz and L, norms are
denoted by ||- || and || - ||o,p, Sobolev norms by || - |lmp and || - {|». For any integer s > 0
and t € J, we define

lu(®llsmp = D I1Dfu(®)llmp + / > I1Dfu(r)llmpd7 - (1.3)
3=0 0 j=0

Let (-,-) denote the inner product in Ly(Q) or Ly(Q)%. In addition, we also use the
notation p’ = 51_"—1 to denote the conjugate index of p for 2 < p < co. We shall denote
by C a constant independent of k, not necessarily the same at different occurences.

The mathematical methods applied to (1.1) have been considered and analyzed by
several authors [1], [2]. In Cui [1], optimal order error estimates are obtained in L.
Because in the right side of (1.1) , there are not only Vu; but also Vu and the integra-
tion of t for Vu, it seems very complex. If we employ the traditional projection of finite
element, such as Ritz projection , Sobolev projection and Ritz-Sobolev projection, we
can’t reflect its eccentric characters. So it’s very difficult to get the superconvergence es-
timate. The paper develops a new projection of finite element ( called Sobolev-Volterra
projection) and by employing a special method for initial value selection, to study
superconvergence of the error between the approximation solution U and the Sobolev-
Volterra projection Vyu of the exact solution u of (1.1). Two order superconvergence
results in L, and WP for 2 < p < 0o are demonstrated for the general quasi-uniform
partition. The superconvergence estimates for this class of problem have been studied
by (3]-{8].

The rest of the paper is organized as follows. In section 2 we lay out the Galerkin
approximation formula of the problem, and give the Sobolev-Volterra projection and
some necessary preparations. Several Lemmas that are needed for the main results are
proved in Section 3. Section 4 derives the main conclusions of the paper, two order
superconvergence in L,(€2) and WP(Q) is given in Theorems 4.1 and 4.3, respectively.

2. Finite-Element Formulations And Sobolev-Volterra Projection

In this section we will consider the semidiscrete Galerkin method with respect to
space for (1.1) and introduce the Sobolev-Volterra projection.

Let {Sh}o<h<1 be a family of finite-dimentional subspaces of Hj(f) satisfying the
following approximation property: for somer > 2, 1 <s<r, 1 <p < oo,

it {[lo = xlop + hll = xll1p} < Ch*llolag » v e W(R) [V HI(S): @

We also assume that the standard inverse properties holds in subspaces Sj,.
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We first introduce the Ritz projection oprator Ry, = Rp(t) : Hy(2) — Sp, for t € J,
defined by

(a(t)V(Rpw — w),Vx) =0, Xx € Sh. (2.2)

The weak form of (1.1) is to find u € H}(R), ¢ € J, such that
¢
(a) (ut,v) + (a(t)Vue + b(t)Vu + / c(t, 7)Vu(r)dr, Vv) = (f(t),v), v € H(Q),
0

(b) u(z,0) = uo(z), reQ.
(2.3)

We introduce the Sobolev-Volterra projection operator Vi = Vi(t) : H}(Q) — Sh,
for t € J, satisfies

(a(t)V(tht—ut)+b(t)V(th—u)+/0t c(t, )V(Vu —u)dr,Vx) =0, x € Sp. (2.4)

Now we define the semidiscrete finite element approximation to the solution u of
(1.1) is to find a map U(t) : J = Sp , such that

(a) (Ut, x) + (a(t)VU, + b(t)VU + /Ot ct, T)VU(r)dr,Vx) = (f(t),x), X €Sn teJ

(b) U(0) = V,u(0), x € Q.
(2.5)

Noting that Sobolev-Volterra projection is Ritz-Sobolev projection when ¢ = 0, Ritz-
Sobolev projection has been studied in Li [8].
Let n = Vhu — u, then (2.4) becomes

(a(t)Vne + b(t)Vn + /OIL c(t, 7)Vn(r)dr,Vx) =0, x € Sp. (2.6)

3. LEMMAS

It is easy to prove the problem (2.6) is equivalent to the following equation

(a(t)Vn,Vx)+(/O [(B()YVn(7) — ar(7)Vn(T) + /OT c(t, 8)Vn(s)dsldr,Vx) =0, x € S
(3.1)

From [9], We derive the following lemma.
Lemma 3.1. Let 2 < p < oo, then there exists a constant C such that for Vju defined
by (2.4)

IViu — ullop + hliVau — ullrp < Ch ullosrp - (3.2)
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Proof. We first estimate ||n{|1, . Let 1, be any component of Vn, then

Inello.p = sup{l(ne, ©)I, & € Ly (), llellop = 1}-

Introducing the dual auxiliary problem, for any ¢ € Ly(2), |l¢lloy = 1, let ¢ €
WLP' (), be the solution of

(a(t)Vih, Vv) = —(v, ), v € HH(R), tE€J, (3.3)
Thus we have
||1/)||1,p’ < CH‘P”O,p’ < C» teJd (3'4)
Then by Green’s formula, (3.3)
(M, 0) = —(m ) = (a(t)Vn, V)

(a(®)Vn, V(¢ — Rpy)) + (a(t)Vn, VEY)

= (a(t)V(th — Rpu + Rpu — u), V(Y — Rhlf))) + (a(t)Vn, VRp)
(a()V(Rpu — u), V(¢ — Ra¥)) + (a(t)Vn, VRrY)

= L + I,

By Holder inequality, (3.4) and (3.1)

| L] < ClRyu—ullp [l¥ — Ballyy
R Hullrp 11y,
< CR Hlullrp -

IA

And
t T
|h|=|%KMﬂ—wwwm~Acmmmwmmvmwl
t T
< c /0 ilep + /0 nllspdsldr | Rustly
t
< oAnwWMHMM'
t
< ¢ [ alyar
Then .
umwngh;+uﬂsm%www+cﬁuwwm-
Thus

t
Inellop = sup | (s 0) 1< CH™lullep + C /0 lspdr,

PEL ()
lello,pr=1
We have
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t
Illip < CHuflp + C /0 Il pdr,
By Gronwall’s Lemma, we have
Inllip < CR™ Hullrp - (3.5)

Next we turn to estimate ||n|lo,, . Introducing the other dual auxiliary problem, for
any ¢ € Ly (Q), ||¢llop = 1, let € WP (Q) be the solution of

(a(t)V®, Vo) = (¢,v), v € Hi(), (3.6)

Thus we have
1@ll2p < Cll@lloy <C . (3.7)

Then (n,¢) = (a(t)Vn, V®) = (a(t)Vn, V(® — Ry®)) + (a(t)Vn, VRy®) = I + L.
By Holder inequality , (3.5) and (3.7)

| Il < Clinllig 12 = Ba®ll1py < CR Jullrp [2ll2p < CR ullrp -
Hence by using (3.1),

| 2| = |(a(t)Vn, VELD) |

= | (/Ot [(b(T) = a4(7))Vn(7) +/O c(7,8)Vn(s)dsldr, VR ®) |
< (/Ot [(B(T) — a¢(7))Vn(T) + / c(r, s)Vn(s)dsldr, V(R,® — ®)) |

0
t T
([ 100 - )T + [ etr,s)Tn(s)dslar, v@)|
0 0
= Ji1+ Js.
Following from Hoélder inequality and (3.5)

t
ho<C / Inllpdr | RA® — Bll1
0
t
< CW /0 lllrpdr @]z

t
cn [ fullpir
0

By using integration by parts, we have

t t
<O /0 Inllodr |®llay < C /0 Inllopdr.

IA

Thus . .
| (1,8 1< CR" (Jullp + /O lullepdr) + C /0 Inllo.pdr-
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It follows from Gronwall’s Lemma

t
Inlop = sup | (n,) 1< Ch"(llullep + /0 lullpd)

SEL ()
ll¢llo, =1

The proof is completed.
We have the following estimate for Sobolev-Volterra projection.
Lemma3.2. Let0<!<r—-2,p>1,k=0,1, 2, andt&J, we have

| (D¥n, ¢) 1< CR [[u(®)llkrp 0llip » & € WH' (). (3.8)
Proof. We only prove Lemma3.2 when k& = 0, i.e.
| (1,9) 1< CH™ u®)llorp Illiy, ¢ € W (). (3.9)

Introducing the dual auxiliary problem, for any ¢ € W' (Q), let & € W2 (Q) be
the solution of

(a(t)V®, V) = (v,¢), ve Hi(N), (3.10)

Then we have

®lli+2 < Clidllep - (3.11)
Let ®" be the Galerkin approximation of @, then by (3.10), we have

(m¢) = (a(t)Vn,V®) = (a(t)Vn, V(& — ®")) + (a(t)Vn, VE")
= (a(t)V(Vhu — Rpu + Ryu — u), V(@ — ")) + (a(t)Vn, VI
= (a(t)V(Rhu —u), V(& - ")) + (a(t)Vn, V&)
= L+D5.
Then by (1.2) and Hélder inequality
| I |< Cl|Rau — ullrp 18 — @10 < CR™ fluflrp 1911420,
And by (3.1)

|| = |(a(t)Vn,VE") |
= | (/0 [(W(T)Vn(7) — ar(T)Vn(7) +/0 c(r, 8)Vn(s)ds)dr, V&) |

t T
= | ( / [(b(T)Vn(T) — a(T)Vn(T) + / c(t,s)Vn(s)dsldr, V(" — @)) |
0 0

+ | (/ [(b(T)Vn(T) — as(T)Vn(T) + /T (7, 8)Vn(s)ds|dr, VP) |
0 0
= J1+ Jo.
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By Holder inequality and (3.2)

t T
o< of / llop + /0 Inllupdsldr 2" — ||y,

IA

t
c /0 Il pdr 8" — Bll1

IA

ot
Chr /0 lullonpdr @],

Following from Green’s formula

Ja < |/ ) — a(7))Vn(7), V<I>)d7'|+|// e(r, 8)Vn(s), V®)dsdr |
= |/ (0, V- ((b(7) — at(1))V®)) dT|+|// (c(7,8)V®))dsdr |
ARG EG)\ ) .
= | ) e BT IV (0r) = ar) V) |
DOLT IV 10 it
+] / | e st IV - el )wnl,pdd |
<cf sw 0.0} 18iapdr+C [ sup B ygy

0 pewir' () ”@b”l,p 0 yewhr' (Q) “1/’” Lp

t
<of sw @9 g,
0 yeWwlr'(Q) “d’”l,p

Therefore,by (3.11), combing Iy, Jy, Jo,

t t
| (1,9) |< CH [l + /0 oyt ol + | sup, )'”(w” Z' .
ewtr'

Then

|u(¢||¢)| < ChHulorp+C [ sup LBy
l '

0 ¢erp Q) ”"/”“lp
sup |(77,¢)| S Chr—!—l ”u”(),r,p + C sup |(77’¢)|d7_
peWiLr' (Q) “¢Hl,p’ 0 yeWwhr' () “w”l,p'
By Gronwall’s Lemma, we have

< CR H|ullorp

Hence

|(n, 9)I \(n,9)]
Wl = yemiby 18l =

< CR™ lullory
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Then

mé) < sup ‘”(w 16l < CR o 16l
peWhr' (0 Lp

The proof is completed.

The rest of the paper, u and U will stand for the solution of problems (1.1) and
(2.5), respectively. Writing the error U — u = (U — Vu) + (Vou — u) = £ + 7, we then
derive superconvergence estimates of the initial value error &(0).

Lemma 3.3. For 2 < p < o0, we have

(@) 1€(0)ll1p < CR™* Hlluollrp + [1ue(0)lrp] » r>2,
(®) 6e()l1p < CR? [lluollzp + ue(0)ll2] , r=2, (3.12)
() 1€:(0)llop < CR™*2 [lluollrp + lue(O)llrz) , > 3.

Proof. We first combine (2.3), (2.5) and (2.6) to obtain the error equation
¢
(&6 ) + (a(t)V€t+b(t)V€+/ c(t, T)VE(r)dr, V) = —=(mt; X), X € Sh, t € J. (3.13)
0

To bound [|£:(0)||1,5, we need an auxiliary problem. For any ¢ € WL¥ (Q) with lPllop =
1. Let ® € HL() be the solution of ,
(a(t) Vv, V®) + (v,®) = —(v, ¢z), v € H3(Q), t € J, (3.14)
where ¢, is some component of V¢. Thus we have
[@ll1pr < Cp(B)lIBllop < Cplt), t €, (3.15).

According to our assumptions, Cp(t) is uniformly bounded on ¢. Let @5 be the Galerkin
approximation of ® in Sj,. Setting ¢ = 0 in (3.13) and by (2.5), noting £(0) = 0, we see
that

(£(0), x) + (a(0)V&:(0), VX) = —(n:(0), x)- (3.16)
Then by Green’s formula, (3.14), (3.16), (3.8) and (3.15) , we know that

(£(0),¢) = —(&(0),62)
(a(0)V&(0), V) + (£(0), @)
= (a(0)V&(0), V&) + (&(0),2")
—(m(0), @)
CR 1 |u(0)[1rp 1B™l11,
ChH1u(0)|1,rp @1,
CR™ ju(0)ll1,rp -

Il

IA A IA
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Thus
[€z(O)llop = sup | (&(0),¢) |< CA™ H|u(0)|1mp - (3.17)

PeL 1 (D)
llollo, pr=1

By summing on [|§:2(0)||o,, ,We have

1€l < CH™*Hu(O)ll1rp < CR ™ [lluollrp + lue(O)firg), 7> 2.

Arguing as before, we can also derive (3.12b).
Finally we turn to the proof of (3.12c). For this end, we introduce the other auxiliary
problem. For any v € Ly () with ||[[lo,y = 1. Let ¥ € W2 (Q) be the solution of

(a(t)Vv, V¥) + (v, ¥) = (v,9), v € H}(Q), t € J. (3.18)
Then we have
”‘I’HZP’ < Cp(t)||¢“0,p’ < Cp(t)v ted (3-19)~

Here Cp(t) is uniformly bounded on t. Let ¥ be the Galerkin approximation of V.

Using argument similar to those used to get (3.12a), by (3.18), (3.16), (3.8) and (3.19),
we have

(é.t(o)a d)) = (a(O)V§t(O)v V\P) + (£t(0)> ‘I’)
= (a(0)VE(0), VI®) + (&(0), ¥")
= —(m(0),¥")
= (m(0), ¥ — ¥") — (ny(0), ¥)
| (m(0), ¥ — ¥*) | + | (1(0), 9) |
CR w0 ll1rp 1¥ = ¥P |1 + CR™ 2| 0(0)]|1,0p (1€ l2
CH2(||w(0)lrp + lle(0) |1 p]-

IA N IA

Thus,
I1€:O)llop = sup | (£:(0), %) [< CR™*?[[|w(0)llrp + s (0)[|rp)-

wELp/(Q)
¥ llo,pr =1

The proof is completed.

4. Superconvergence In W1P(Q2) And L,(0)

Our object of this section is to demonstrate the main results of the paper. We shall

begin by proving two order global superconvergence estimate of ¢ and & in W1P(Q)
for 2 < p < o0.
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Theorem4.1. Forr > 2 and 2 < p < oo, we have, for t € J,

t
(@) llélhp < Ch 1 /0 ullrpdr |
(4.1)

t
(®) l€elhp < CR™*[u(0)ll1,rp +/0 lell2,rpdr] -

Proof. We first estimate ||£||;, . Let ®,¢ satisfy (3.14),(3.15), then an analogy of the
proof for (3.12a) implies, by Green’s formula, (3.14), (3.13) ,(3.8) and (3.15),

€0 = [ @nor=- [ @oaar
_ /0 [(a(r) Ve, V@) + (&, $)]dr
- /0 [(a(r) V&, V) + (&, ®")]dr

= - / [(m:(7), ®") + (b(7)VE + / Tc(T,s)Vf(s)ds,Vq)h)]d‘r
0 0

t T

< of /0 B () g (18811 + (€l 18" 1 + /0 I€ll1pds 1271 ]dr}
t t

< cort /0 ()l pdr [Bll1y +C /0 ellwpdr 8]

<

t t
o /O ()1 pd + C /0 l€ll1pdr,

Then (4.1a) follows from Gronwall’s Lemma.
To bound ||&;[1, , we differentiate (3.13) with respect to t to get

(&et, X) + (a(t) Ve, Vx) + ((ac(t) + b(t))VE, Vx) + ((Be(t) + c(t, 1)) VE(L), V)
+( /0 ct, T)VE(T)dT, VX) = —(Mi,X)s X € Sh. (4.2)
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By applying Green’s formula, (3.14), (4.2), Hélder inequality ,Lemma 3.2, (3.15),
(3.12a) and (4.1a), we have

(gt:c, d’)

IN

IN

IA

IN

(€2(0), ) + / (6, 0)dr

t

(&:2(0), 9 ; (ést, Pz )d
¢

(£:2(0),0) + | [(a(1)VEéy, V") + (€, ™)ldr

o‘-\“o

(£42(0), ¢ (e, ®") + (ag(7) + b(7)) V&, V)
(be(r) + e{r, 7)) VE(), VE) + ( /0 ") (r,5)VE(s)ds, VEM)dr
€Ol 810+ 1| {07 ullan 191
]
Hlelg 181+ €l 1900 + [l 182, 3d]
6O+ CL[ {1 fulzry + el + €l + [ elupsyar
0 0

t t t
WO+ OW [ fullarpr +C [ elpi +C /0 ol pdr
0 0

t t
CH+ [w(0)||1p + O f lullzppdr + C /0 €l pdr.
0

The desired estimate (4.1b) is now concluded by Gronwall’s Lemma.
The proof is completed.

For the case of r = 2, we also have the following superconvergence.
Theorem4.2. For r =2 and 2 < p < oo, we have, for t € J

(a) llgllup < C2 /0 s 0,507
(4.3)

i
(b) 1€y < CR2{l[u(0)ll1.2p + / lullazpd]
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We finally derive two order superconvergence of ¢ and & in Ly(£2), for 2 < p < co.
Theorem4.3. Forr >3, 2<p< o0, t € J, we have

t
(a) lellop < Ch7+? /0 lullppdr,

®) ey < O @)l + [ Nularpd].

Proof. Let ¢, ¥ satisfy (3.18), (3.19), and Uh is the Galerkin approximation of ¥. In
the same way as the proof for (3.12c), it follows from (3.18) and (3.13) that

€ = [ Cvyr
_ / [(a(7) Ve, VIP) + (&, ¥M)]dr
_ / (e, T™) + (b(r)VE + / " o(r, $)VE(s)ds, VEM)dr
_ /0 (0, ¥ — W) — /0 (0, W)dr + /0 (b(r)VE
+ / o(r, $)VE(s)ds, V(U — UM)dr
0

_ / t (b(r)VE + / " e(r, 5)VE(s)ds, VI)dr
0 0
= Lh+DL+13+ 14

Next we estimate I} — Iy respectively.
By Lemma3.2, we have

t i
| /O (ne, ¥ — UP)dr | + | / (ne, W)dr |
0

. t
< Ch! /0 lullimp ¥ = Py pdr + CRF2 /0 lullyrpdr ¥z

||+ | I2 |

t
< CH? /0 lullirpdr (22 (4.5)
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By Hoélder Inequality and (4.1a)

| I3]| = | / T)VE +/ c(t,8)VE(s)ds, V(¥ — \Ilh))dT |
c /0 (Elp + /0 1€llpds) 1 — U]y 7

A

t
< C [ lelpr 1% - ¥
t
< O [ ulypdr [Way (46)
0
In order to estimate Iy, let B(7,&,¥) = (b(1)VE + [y c(7,5)VE(s)ds, V), B* is the

adjoint operator of B, then by Green’s formula, we have

| Iy |

t T
| /0 (b(r)VE + /O o(r, 3)VE(s)ds, VI)dr |

t
| /0 (&, B*(r)W)dr |

t
< /0 lellopdr 9], 47)

Combine (4.5)-(4.7) and by (3.19), we have

t t
| (€, %) |< Ch™+? /0 lullyppdr + C /0 lEllo pdr.

Then (4.4a) follows from Gronwall’s Lemma.
We next turn to the proof of (4.4b). An analogue of the proof for(4.1b), let ¢, ¥
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satisfy (3.18), (3.19), by (3.18) and (4.2), we have
t
€d) = GO+ [ Cwviar
0
= (€(0).9) + /0 (@(r) Ve, VE) + (€, )]dr
= (&(0),9) + /0 (a(7)VEw, VI) + (€, TP))dr
t
= (&(0),9) - /0 [, ©™) + ((ae(7) + b(r)) Vs, TTP)
F((be() + (7, 7)) VE(T), VI) + ( /0 " en(r, $)VE(s)ds, VUMdr
t t
= (&(0),¥) + /0 (e, ¥ — UMY — /0 (e, W)dr
t
+ [ (@) +b(r) Ve, V(@ — 0)ir
0
t t
- /0 (as(r) -+ b(r)) V&, VT)dr + /0 (be(7) + c(r, 7)) VE(r), V(T — TM))dr
t t T
—/ ((be(T) + (7, 7))VE(T), VE)dT +/ (/ cr(1,8)VE(s)ds, V(¥ — \Ilh))dT
0 0 0
t T
- / ( / er (7, $)VE(s)ds, V)dr
0 0
= L4+ (4.8)

Then by Hélder Inequality , (3.12¢) and Lemma3.2, (4.1b) and (3.19), we have

L4\ L 415+ L] < CHluollrp + [u(0)llry]
t
LORH / lullompdr 1€ — WH||1
0

t
LCRT? /0 lullorpdr €]y

t
+c /0 lEdllnpdr [T — T,

IA

t
CH*2fuoll1.rp + /0 lullanpdr] 1% ]2, -
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By (4.1a)

IA

t t
1T | + | Is | C/HNWWHW—W%w+C/(/HNW“MHW—WWW'
0 0

0
t
< cﬁnwmmnw~wmﬁ

i
< (JhT“/0 lullt,rpdT [|¥]l2,p

As in the proof for (4.7), we have, by (4.4a)

t t
| s |+ 17| < C/O 1€:llo.pdr II‘I’Ilz,p'JrC/0 I1€llo.pdr %]z,
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Combining I; — Iy and (4.8), we have '
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The proof of (4.4b) is now concluded by (3.19) and Gronwall’s Lemma.
The proof is completed.

REFERENCES

[1] X.Cui, The numerical analysis for the finite element of the Sobolev-Volterra projection and integro-
differential equation, ACTA mathematic applicatae sinica, 2001.

[2] S.B.Cui,The global solution of the nonlinear integro-differential equations. ACTA mathematic
applicatae sinica, 1993

{3] D.N.Arnold, J.Douglas Jr and V.Thomee, Superconvergence of a finite element approximation to
the solution of Sobolev equation in a single space variable, Math.Comp. , 36(1981), 53-63.

[4] Do.Y . Kwak, S.G.Lee, Q.Li, Superconvergence of a finite element methods for linear integro-
differential problems, Internet.J.Math.and Math.sci. , 23(2000), No.3, 595-607.

[5] Q.Li and H.W.Du, L? error estimates and superconvergence for finite element approximations for
nonliear parabolic problems, J.KSSIAM, Vol.4, No.1, 67-77, 2000.

[6] Q.Lin and Q.D.Zhu, Theory of supercongence for the finite element, Changsha,Hunan Scientic
Publisher, China, 1989.

[7] Y.H.Cao, Some numerical methods for some involving equations. Master Thesis, Shandong Normal
University, Jinan, Shandong, China, 2003.

[8] Q.Li, Two order superconvergence of finite element methods for Sobolev equations. The Korea
Society for Computational and Applied Mathematics and Korea SIGCOAM. 2000.

[9] Y.P.Lin, V.Thomee and L.B.Wthlbin, A Ritz-Volterra projection to finite-element spaces and

approximations to integro-differential and related equations, SIAM J.Numer.Anal., 27(1990), 608-
621.



38 QIAN LI, WANFANG SHEN, JINFENG JIAN

Qian Li:School of Mathematics
Shandong Normal University
Jinan, shandong, 250014
P.R.China.
E-mail:li_qian@163.net

Wanfang Shen : School of Mathematics
Shandong Normal University

Jinan, shandong, 250014,

P.R.China.
E-mail:shenwanfang000@163.net

Jinfeng Jian: School of Mathematics
Shandong Normal University

Jinan, shandong, 250014,
P.R.China.

E-mail:jjf 81@163.com



