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A LOGARITHMIC CONJUGATE GRADIENT METHOD
INVARIANT TO NONLINEAR SCALING

I.A. MOGHRABI

ABSTRACT. A Conjugate Gradiant (CG) method is proposed for unconstained op-
timization which is invariant to a nonlinear scaling of a strictly convex quadratic
function. The technique has the same properties as the classical CG-method when
applied to a quadratic function. The algorithm derived here is based on a logarith-
mic model and is compared to the standard CG method of Fletcher and Reeves [3].
Numerical results are encouraging and indicate that nonlinear scaling is promising
and deserves further investigation.

1. INTRODUCTION

In this paper, we propose a non-linear logarithmic model and use it as the basis for
deriving a new CG algorithm. If g(z) is a quadratic function and f is defined as a
nonlinear scaling of ¢(z) if the following conditions hold: f = F(q(x)), df > 0 for
z = ¢*, where z* is the minimizer of ¢(z) with respect to x.

The following properties immediately follow from the above conditions:

i Jevery contour line of ¢(z) is a contour line of f,
ii) if z* is a minimizer of g(z), then it is also a minimizer of f.

Various related work have been published in this area: and we mention some as
follows:

a) a conjugate gradient method which minimizes the function f(z) = g(z)?,p > 0 and
x € R™ in at most n iterations has been described by Fried in [4].
b) The following minimization problem has been considered by Goldfarb in [5]:

Minimize f(z) = F(g(x)) where dF/dg = F' > 0,q > 0.

This last relation corresponds to nonlinear scaling and used by Spedicato [6] to define
invariancy to nonlinear scaling.

¢) The special case F(q(z)) = €1 + (1/2)e2¢%, where €1 and 2 are real scalars, have
been investigated by Boland et al [1].

d) Another model has been considered by Tassopoulos and Storey [7], is given by
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F(q(z)) = (19 + 1)/e2q(x), for e2 < 0.

In the next section, we investigate, in a similar context, a logarithmic model on which
we base our new algorithm.

2. THE LOGARITHMIC MODEL

We consider here the model

(1) F(q(z)) = In(q(z)).

We first observe that F'(g(x)) and g(z) have identical contours and the same unique
minimizer z* but with different function values. For any F satisfying dF/dq = F' > 0,
q > 0, it has been shown in [1] that the updating process specified below genetrates
identical congugate directions and the same sequence of iterates z;, to the minimum
z*, as does the original method of Fletcher and Reeves [3] when applied to f(z) = q(z)
and for H; = 1.

We outline now our algorithm. Given zo € R™ as an initial estimate to the minimum
x*, then

bo = —g(xO)y
then iteratively we use
(2) Tip1 = T; + a;p;, for i >0,
and then
(3) pit1 = —H;g(xiy1) + B;pi, fori > 1,

where H; is some positive definite matrix that is usually updated at each iteration. H;
is set to I in the standard Fletcher-Reeves method. Also,

(4) Bi = (5igiT9i)/9;’F—19i—1,
where §; is to obtain invariancy to nonlinear scaling and is derived next.

It is well known that CG methods need to be restarted in practice to reset any
accumulation of errors that may influence the numerical stability of the methods, caused
by generating search directions which are not necessarily downhill. A well known
criteria for restarting is given by

pTgi > 0T gi, for — 0.8 < 6 < 0.96.
This condition indicates that the search direction is not sufficiently downhill.
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The key feature of the proposed algorithm is in the derivation of the parameter 0,
where § = Fi'_1 / Fl-', which must be easily computable using available data such as

function and gradient evaluations. It follows from (1) that

(5) gi = F; A(z; — «*)
and
(6) gio1 = Fi_A(zi_1 — %),

where A is the Hessian of g. Thus,

6; = Fi_,/F, = (g7 1(zi — 7)) /g; (xio1 — 7).

Also,
g1 (zi — 2*) = g1 1 (zi1 + i apiog — 27),
using (2).
Similarly,
9F (zio1 — 2*) = g7 (2; + qi1pi-1 — T°).
Therefore,
(7) 8; = (g7 1[zi-1 — 2*] + aic1p19i-1)/ 97 [&: — 2%} + @i 1P} 15

Using (5), (6) and (7), we obtain

; = [Fi_(xii1— ") Aoy — 2*) + 0i1p]_18i1)/
[F; (z; — )T A(z; — &) — ai_1pr-19i)
Therefore,
(8) 0; = [2F,_;qi-1 + ci 1P 19i-1)/12F, @ — ci—1pt-19i]

From (1), we can express F,_; and F, as

1

F,_;=1/gi—; and Fz' =1/g;,
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which, upon substitution in (8), yield

9) 0; = 2+ ci_1p_19i1]/ 12+ 1Pt 1.

In case of exact line searches, relation (9) becomes

0; =14 i 197 19i-1/2.

3. NUMERICAL RESULTS AND CONCLUSIONS

Seventeen standard test functions (see appendix) are employed, in dimensions up
to 1000, in order to examine the overall effectiveness of the two new algorithms. The
algorithms were tested using C++ on a PIV 200 processor, using double precision. The
line search accuracy parameter a is chosen to satisfy

PL1gi+1 = 0.75g711gi+1-

Whenever relation (7) is not satisfied the iteration is restarted, as follows: the estimated
n
error-vector term is used as in [6], i.e, e,41 = D €ips , Where g; = (aigglrlpi) /(¥ p:).

This estimated error-vector term is added to xn:qo to find Zp+2, i-€ Tnt2 = Tni1t €n+1
and the iteration is then restarted with —gp42.

The line-search algorithm used is a standard cubic interpolation. Table 1 contains
the respective numerical results for the standard Fletcher-Reeves algorithm (3] and the
new algorithm. The table reports the number of function calls (NOF), the number
of iterations (NOI) and the corresponding function value F are given for each test
function. Overall totals are also given for NOF and NOL

Comparisons are affected by the choice of test function, accuracy required, line search
and restarting criterion. Nevertheless, the computational results indicate clearly that
the new algorithm gives an overall improvement of at least 10% on NOF or NOI,
although on individual functions there can be a loss of efficiency.

It is generally evident that the new algorithm has a clear advantage especially on
higher dimensions.

An iteration terminates when | f - fin | < 1 x 10720
" TABLE : (1)
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TEST F/R NEW
FUNCTIONS | N NOI(NOF) | NOI(NOF)
ROSEN 2 22(54) 23(59)
CUBE 2 22(57) 23(62)
BEALE 2 8(20) 9(28)
BOX 2 9(41) 9(40)
FREUD 2 6(18) 6(21)
BIGGS 3 11(31) 11(31)
HELICAL 3 18(39) 17(34)
RECIPE 3 6(19) 7(21)
MIELE 4 30(83) 28(77)
POWELL 4 31(67) 23(59)
WOOD 4 19(42) 20(41)
DIXON 10 17(37) 23(49)
OREN 10 12(64) 13(56)
NON-DIGN 20 20(46) 21(47)
TRI-DIGN 30 28(57) 29(58)
OREN 30 21(95) 20(91)
SHALLOW 40 6(18) 6(19)
FULL 40 39(79) 38(83)
EX-ROSEN 60 23(57) 24(60)
EX-POWELL | 60 40(83) 42(70)
EX-WOOD 60 17(42) 18(46)
EX-POWELL | 80 43(88) 41(84)
WOLFE 80 48(75) 41(79)
NON-DIGN 90 23(53) 21(51)
EX-WOOD 100 | 19(42) 19(39)
EX-ROSEN 100 | 23(57) 23(48)
Wood 200 | 29(65) 30(58)
POWELL 200 | 52(133) 41(93)
POWELL 1000 | 89(240) 85(186)
TOTAL NOI | 731 712
NOF | 1802 1690
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Appendix
1. Rosenbrock banana function, n=2,
f=100 (x2-x3)%4(1-x1)? , xo =(-1.2,1.0)7.
2. Cube function, n=2,
f =100 (x2-x3)24+(1-x1)?, xo=(-1.2,1.0)T.
3. Scale function, n=2, :
f=(1.5-x1 (1-x2))24 (2.25 - x1 (1 - x3))2+ (2.625 - x1(1 - x3))2, x0 = (0,0)7.
4. Box function, n = 2,
F=3"0 0 ( e %z - e -x%z; - €% 4 e-107) 2 where z; = (0.1)i and xg = (5,O)T, i=1,...
5. Frudenstein and Roth function, n=2,
f=[-13 + x1 + ((5-x2)x2-2)x2]? + [-29 + x1 + ((14x2)x2-14)x2]2, x0 = (30,3)”.
6. Recipe function, n = 3,
f=(x1-5)2 + x3 + x3/(x1-x2)%, %0 = (2,5,1)T.
7. Biggs function, n=3,
f=3" (e7®1% - x3 e "2 e 4 5e710%1) 2 where z; = (0.1) i and xo= (1,2,D)7 i=1...
8. Helical Valley function, n=3,
f = 100 { [x3-1.0 ]2 + [r-1]? }+ x2,where r=1/2 arctan (xa/x; ), for x; > 0
and r = 1/2 + 1/2 arctan (xz/x; ) for x; < 0, xo = (-1,0,0)7.
9. Miele and Cornwell function, n = 4,
f= (" - 1)2 + tan 4 (x3 - x4) + 100 (x2- x3)% + 8x14 (xa- 1)%, x0= (1, 2, 2, 2)T.
10. Dixon function, n = 10,
f=(1-x )%+ (1- x10)® + 10, (x? - x;4+1)% , x0 = (-1;.. )T, i=2,...
11. Oren and Spedicato power function, n = 10,30,
f=3" (1-x2),% = (1,...)7.
12. Non diagonal variant of Rosenbrock function, n = 20, 90,
f=73%7 40100 (x - 2+ (1-x)%],x=(1,.) T j=1,..
13. Tri-diagonal function, n = 30,
f= [ 2?22(2)(1' - Xi—1 )2 ] , Xp = (1;....)T.
14. Full set of distinct eigenvalues problem, n = 40,
f=(x-1)2 + 30, (2% - xic1)? , x0 = (L;..)7.
15. Shallow function (Generalized form), n = 40,
f= M2 (xd g - %0 )2 + (1- %21 )%, %0 = (-2 )T.
16. Powell function (Generalized form), n = 60, 80,
4'f4= Z:l:/;l[( xX4i-3 + 10 x 4,'_2)2 + 5 (X 4i-1 - X4i )2 + (x4i-2-2 )(4,'_1)4 + 10 (x4i-3 -
i),
xp = (3,-1,0,1;...)T.
17. Wood function(Generalized form), n = 60,100,

Z?:/‘llf = [100 (x4i-2 - xii—3)2 + (1- X4i—3)2+ 90 (x4; - Xii—1)2 +(1- X4i—l)2
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+ 10.1 (x g4i—2 - 1)? + (x45- 1)? + 19.8 (x4i—2 - 1)(Xgi—1), X0 = (-3,-1:-3,-1,..)T.
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