
Inteniaticmal Journal of CAD/CAM Vol. 3, No. 2, pp. 77~83 (2003) International
Journal of
CAD/CA 이

www.ijcc.org

Generalized Cylinder based on Linear Interpolation by Direction Map

Joo-Haeng Lee*, Hyun Kim and Hyoun음・Sun Kim
Intelligent Robot Research Team, ETRI, Daejeon, Korea

Abstract — We propose two algorithms to generate (1) polygonal meshes and (2) developable surface patches for generalized
cylinders defined by contours of discrete curves, lb solve the contour blending problem of generalized cylinder, the presented
algorithms have adopted the algorithm and related properties of LIDM (linear interpolation by direction map) that interp이ate
geometric shapes based on direction map merging and group scaling operations. Proposed methods are fast to compute and
easy to implement.

Keywords: Generalized cylinder, Linear interpolation by direction map, Developable surface

1. Introduction

Generalized cylinder (GC) is a well-known modeling
technique to design tube-like shapes whose surfaces are
constructed over skeletal frames composed of a finite
seq니ence of contours (2D cross-sectional curves) that
are systematically arranged on a 3D spine curve.
Generally, the spine c니rve determines the overall shape,
and contours expresses detailed features on the surface.
By interpolating (or blending) the given contours, we
can generate a one-parameter family of contours which
conceptually sweeps along the spine c니rve while
changing its orientation and shape. Using this general
sweep analogy, we can represent a GC as a tensor
product surface with two parameters representing the
spine and the contour directions, respectively. After
generatin응 the surface from the initial design, we can
interact with the skeletal curves or the surface itself to
change the sh叩e characteristics. With these simple
building blocks and mechanisms coupled with other
geometric modeling techniques, we can design vario니s
kinds of artificial shapes (i.e., pipes, vessels, and tires)
and natural shapes (i.e., human bodies, flowers, and
seashells) as GC models for CAD and computer graphics
applications.

Previous researches have focused on various GC
topics such as surface representations, deformation and
interaction techniques, and orientation arrangements.
Note that, to be integrated with general-purpose
geometric modeling tools, it is a common practice to
generate s니rface mod이s directly fmm the intrinsic
definition of GC: i.e., a spine and contour c니rves.
Hence, there are abundant research works presenting

^Corresponding author:
Tel: +82-42-860-1338
Fax: +82-42-860-6790
Homepage: http://joohaeng.etri .re.kr
E-mail: joohaeng@etri.re.kr

how to represent GC surfaces as a polyhedral mesh 11],
Bezier [6], B-spline [14], or NURBS surfaces [4] from
the given skeletal frames. Some representation methods
focus on the direct ray-casting [14] without convertin븜

into specific representations. We can find researches
presenting special representations suitable for interactive
deformation [4, 6]. Contour anangement with smooth
orientation change is simply achieved by embedding a
contour on the nonnal plane of Frenet frame [3, 4, 6, 1 가].

For better results, rotation minimizing frame can
optimizes distortion [7]. As a more sophisticated topic,
Gansca et al. deals with the problem of self-intersection
avoidance in the generation of GC surfaces [5].

Another important GC topic is contour blending,
which is required to generate a one-parameter family of
contours continuously. One of the fundamental steps
for coni아h blending is to set up con'espondences between
features of neighboring contours. However, in most of
the previous approaches, these correspondences are
assumed to be described manually or implicitly. For
example, although very complicated contours were
illustrated in B-Spline surface approach of de Voogt
et al. [14], no explicit step is specified for setting
correspondences between every pair of control points
from adjacent contours. This is partly because eveiy
contour has the same number of control points, which
may lead to trivial correspondences in a certain case.
However, this is not the case of real-world examples
where con'espondences are rather complicated to be
described manually or assumed implicitly.

This correspondence problem is also fundamental in
morphing, (Note th사 morphing is composed of two
steps: (1) correspondences and (2) path interpolation.)
When key-fraines are not so complex, existing geometric
morphing techniques works fine. However, we can
hai'dly expect full automation: for better result, a human
intervention is inevitable. For example, when we want
to generate in-betweens intei*polating 응iven key-frames

http://www.ijcc.org
http://joohaeng.etri
mailto:joohaeng@etri.re.kr

78 International Journal of CAD/CAM Vol. 3, No. 2, pp. 77〜83

representing different postures of a dancer [13], we
could hardly expect one of dancer's arms is never
corresponded to one of legs based on geometric
intelligence of the previous algorithms. In addition, most
of morphing techniques cannot express interpolating
path in the form of parametric curves. If we consider
contours as key-frames, parametric form of moving
path is critical in representing a GC surface.

In this paper, we suggest to adopt a geometric
morphing technique referred to as LIDM (linear
interpolation by direction map) proposed by Lee et al.
[1이 to solve both correspondence and parametric
interpolation problems in concur blending. LIDM is
clos이y related to previous morphing technique referred
to as LIMS (linear interpolation by Minkowski sum)
[9, 12], but more generalized and computationally
efficient.

In addition, we present methods to construct GC
surface with (1) polygonal mesh and (2) developable
surface patches using the geometi'ic properties of LIDM
[8]. The overall computation of proposed methods is
fast enough to be applied in interactive geometric design
applications.

The remainder of this paper is organized as follows.
In Section 2, we describe a typical representation of
parametric GC surface and explain why contour blending
problem is important in GC. In Section 3, we propose
to adopt LIDM as a contour blending method in GC
design. In Section 4, we describe how to build a
polygonal mesh of GC whose contours are blended by
LIDM. In Section 5, we describe how to generate
developable surface patches representing GC. In Section
6, we demonstrate the ex이nple results.

2. Parametric Representation of GC

For a parameterized spine curve K(u) in 3D, we
can choose the normal plane Ng) at K(“o) as the
contour plane, which is intrinsically defined by Frenet
frame [3]. (As in Chang et al. [4], we can define the
orientation more genercilly-independently of differential
characteristics of the given spine curve.) In this case,
N(m&) is spanned by its nonnal and binormal vectors in
3D, /(以()) and 仏.(“())，and its local origin is placed at
K(〃()). When a 2D contour curve Gn(v)=(xM0(v), yHo(v))
is embedded in N(&, it has the following parametric
form:

c„o(v) =X“°(V)• 〃.m)+y 点)• »,(«()) (1)

However, considering that every contour Cz/(v) at K(u)
may have a different shape, above parametric form
should be further generalized as follows:

G,(V)=•니*) ,비:")+.V"(V)』r(以)

=C(w, v) =x(u, v) • nx^u) (払 v) -h/w) (2)

When we consider GC as a sweep surface of a moving
contour, the parametric form of GC surface S is
generated by sweeping Cz/(v) along KQi) as follows:

S二Sg)= C(")+K(u)

=x(s) •〃血)+y(",u) •〃血)+K(m) (3)

In the above equation, we assume that a pair of
coordinate functions (xz/(v), yw(v)) is defined at every
point K(〃)of the spine curve; however, a human
designer cannot specify infinite number of coordinate
functions manually at each value of u. This is the point
where contour blending problem arises: how do we
smoothly interpolate a finite set of key-frame contours
to generate a certain number of in-between contours
required to satisfy the given precision criteria.

In this paper, to be more focused on the blending
problem itself, we can confine the bases of the contour
plane to be fixed over u. In this case, a GC surface has
a following parametric form:

S(w,v) = C(W,V)+ A，(W)=X(V)-/7v+V(V)-/7v4-A，(Z7) (4)

This is the typical case when the spine curve is a
straight-line segment. The examples presented in this
paper are of this type.

3. Contour Blending by LIDM

Recently, Lee et al. [10] proposed an efficient
algorithm referred to as LIDM (linear interpolation by
direction map) to interpolate two polygonal shapes.
Moreover, a designer can specify additional control
shapes, which enables a Bezier-curve (or blossom) like
control str니cture. The result can be represented as a
parametric form of a one-parameter family of polygons.
Specially, the automatic correspondences work quite
well for relatively simple shapes rather than the
complex ones of character animations. Hence, we
propose to adopt LIDM for contour blending in GC
design.

In LIDM, a polygon is represented by a circular list
of direction vectors, which is referred to as a direction
map. A direction vector is defined as a connecting vector
of two neighboring polygon vertices. (See Fig. 1. The
number describes the correspondence between a direction
vector and an edge.) A group of consecutive direction
vectors may represent a geometric feature such as a
pocket. We assume that, in LIDM, the direction itself
of any direction vector is invariant. Hence, (1) the
sequence of directions and (2) lengths of individual
direction vectors are deciding factors of a shape
feature.

We can generate a new polygon by merging two
direction maps, each of which represents different
shapes. This step corresponds to blending features from

Joo-Haen^ Lee, et al. Generalized Cylinder based on Linear Interpolation by Direction Map 79

Fig. 1. Shapes (upper row) and their direction maps (lower row):
(a) penta응on, (b) discrete oval, and (c) 5-star.

Fig. 2. Convolution merging: (a) the merged direction map of
Fig. 1(a) and (b), (b) newly generated shape from (a), (c) the
merged direction map of Fig. 1(b) and (c), (d) newly generated
shape with self-intersections, and (e) trimmed result of (d).

different polygons. In merging operation, we change
neither the direction nor the length of any direction
vector. Only a new merged sequence is generated by
applying a certain geometric correspondence rule.
Among various feature correspondence strategies,
convolution merging (see Fig. 2) is closely related to
Minkowski sum or convolution operations, where vertex
wise feature correspondences are set up by geometric
rules [10]. Note that LIMS (lineal* interpolation by
Minkowski sum) is a special case of LIDM [9. 12].
Another merging method is convex-hull merging (see
Fig. 3) where no self-intersection occurs; hence,
trimming is not req니ired. For convex shapes, the
convolution and convex-hull merging generate the
same result.

To generate a one-parameter family of in-between

(c) (d)

Fig. 3. Convex-hull merging: (a) the merged direction map of
Fig. 1(a) and (b), (b) newly generated shape from (a), (c) the
merged direction map of Fig. 1(b) and (c), (d) newly generated
shape without self-intersections.

shapes, we have to smoothly change the degree of
dominating feature. In LIDM, this is accomplished by
changing the length of direction vectors using group
scaling operation where different values of scaling
factors are assigned to each group of direction vectors.
(Note that each group is identified by a group id, which
is assigned to every direction vector in a merged direction
map.) The examples of scaling factors can be Bezier or
blossom basis functions. Using both merging and group
scaling operations, Lee et al. proposed interpolation
algorithm as follows (for details, we refer readers to
[10]):

Algorithm 1: LIDM
Input: A merged direction map: O<—D()十・ ••十/)〃,； and

Scalar functions for the group scaling operation:
B={Z>o(f),b,M) ； and
The blending parameter : t.

Output: A contour generated by LIDM algorithm:
C=C(r).

Fig. 4 is an example。니tput of LIDM algorithm: (a)
two input direction maps represent a triangle and an
octagon; (b) by group scaling operations (in this
example, with linear scaling functions), the dominating
direction vectors become longer and the others shorter;
however, (c) after the lengths are normalized into one,
we find that the directions are invariant over t. Fig. 5
shows a result for the four input direction maps: the
initial circle becomes longer in width and height in
order according to the sequence of control polygons;
and comes back to a circle satisfying the final key-
frame. In Fig. 5, we used cubic Bernstein polynomials
as blending functions.

80 International Journal of CAD/CAM Vol. 3, No. 2, pp. 77~83

Fig. 4. (a) Smoothly changing polygons, (b) their direction maps, and (c) their normalized direction maps.

Fig. 5. (a) Control polygons: tenninal polygons (both circles) and additional polygons (two quadrangle), (b) the generated sequence.

4. GC in Polygonal Mesh

In this section, we describe how to build a polygonal
mesh of GC whose contours are blended by LIDM. For
in-between shapes generated by LIDM, there exist two
interesting geometric properties [8]: (1) all the shapes
have the same normalized direction maps over u; and
(2) the number of vertices (or edges) of generated
polygons is constant over u. Two properties hold unless
some edges vanish or shrink after trimming. Based on
these properties, it is straightforward to build triangular
(or quad) meshes by connecting corresponding vertices
from neighboring contours. (See Algorithm 2 below.)

Algorithm 2: LIDM_GC_POLY_MESH
Input: Two terminal contours and additional control

contours: C={Cq,…，Cm}; and
Scalar functions: ...» b,M); and
/* i.e., Bernstein polynomials */
The number of in-between contours including
two termin시s: (〃+l).

Output: A Polygonal mesh representin응 a GC surface:
M.

1.。〈―£)()+…+。〃7；

/* merge direction maps:。广二DM(G) */
2. /«-IDI; .

/* /: the number of direction vectors {di} in £)*/
3. C"—LIDM(D,B,0);

/* the initial contour C(0) 거‘/

4. For i= 1 to II
5. /* 血=l/〃 */
6. C"-(”)=LIDM (£), B, r);

/* Assuming IDM(C(r))l is invariant. */
7. MW—8；

8. For j= I to /
/* Construct a sub-mesh M, connecting Cprev

9.

10.
11.
12.

and C收 */

佝—two triangle (or a quadrangle)
constructed using the corresponding
4 vertices:丿-th and (J+l)-th
vertices of Cprev and Cnext;

MlM’.i丿Aq;
M—MuMj；

C卩)磐\'< ,

■prev

In the above algorithm, DM(C,) represents the
construction operation of a direction map for the
contour C；. When the above algorithm generates one
intermediate contour C(f；), it evaluates one LIDM
operation for each parameter value t-t}. Note that,
however, direction map merging is comp니ted just once

Fig. 6. Build a polygonal mesh of GC: (a) control polygons (the
same as in Fig. 5) aie ananged on a straight line, (b) in-between
contours generated by LIDM, (c) the generated polygonal mesh,
and (d) shaded result of (c).

(d)

Joo-Haen^ Lee, et al. Generalized Cylinder based on Linear Interpolation by Direction Map 81

during the whole execution since the correspondences
are assumed static. Each sub-mesh M； is generated by
connecting two consecutive contours. The edge
connection rules are simple. For example, to generate
two triangles: (1) connect two starting points, (2) two
end points of corresponding edge, and (3) choose one
diagonal. The final mesh M is generated by combining
all the sub-meshes. Fig. 6 shows an example of
exec니tion steps of Algorithm 2.

5. GC in Developable Surface Patches

In this section, we describe how to generate developable
s니rface patches representing GC. A developable surface
is a special type of ruled surface, where all the points
from one ruling have the same tangent plane [3].
Specially, a developable surface can be unfolded
(developed) into a plane without stretching or teaiing.
Hence, it has a wide-range of applications in
manufacturing based on sheet metal-like materials. The
recent works shows that a developable surface has a
nice structure of controllability [2] and a neat
representation into NURBS [11].

If a ruling direction is fixed over the entire patch, it
generates a cylindrical developable surface. In our
application, a direction vector becomes a ruling whose
direction is invariant. Hence, every direction vector (or
an edge of a polygonal contour) corresponds to one
developable surface patch bounded by two boundary
curves. Moreover, boundary curves are defined by
vertices of control contours.

Algorithm 3: LIDM_GC_DEV_SURF
Input: Two terminal contours and additional control

contours: C = {C0,..., Ctn}; and
Output: / control points set for profile curves:

, P={P],.,.,P/}. /* P,= {P®

1. D<—Dq+,
/* merge directions maps: Z)/=DM(z4,) */

2. 心。I; 스)

/* /: the number of direction vectors {di} in D */
3. For i二 1 to /

/* For each profile curve Ft defined by a direction
vector 2 */

4. dcurr <— the /-th direction vector of £>;
5. For J=0 to m

/* Find Jhe contr이 point set Pz for F, */
6. d <—find a direction vector satisfies

two conditions: (1) the counter-
clockwise-ne<irest direction vector
from dcurr ； and (2) its group id is
丿； »

7. the end point of a ;
8. P<-P”사;

Algorithm 3 finds a group of control points
representing every pair of boundary curves (referred to

as profile curves, here) per a direction vector. The
interesting property is that, if we apply Bernstein
polynomials B?(f) of degree in as scaling factors for
the group scaling operation, the developable surface is
a Bezier surface of degree (1, m). For example, z-th
developable surface patch v) defined by 2(m+l)
control points (i.e., {/%(),..., and {R+i,(),•… 心니、,〃})

found in Algorithm 3 has the following tensor product
form:

i+\ w
5®，v) = ZWLSB；"(v) (5)

k-i j=0

Actually, the type of two bo니ndary curves in a single
developable surface patch is defined by how we blend
contours 니sing a certain scaling factors.

Fig. 7 shows an example of execution steps of
Algorithm 3. In Fig. 7 control contours in pink are the
same as in Fig. 5 and 6: (a) three consecutive green line
segments represents a control polyline for a profile
curve; (b) a developable surface patch is defined by
consecutive profiles c니rves (in light blue). Moreover, its
ruling (a straight-line segment in light blue) is the
morphing edge sweeps along profile curves; (c) all the
control polylines found; (d) all the control polylines

Fig. 7. Computing control points of developable surface patches:
(a) two sets of control points and profile curves defining a
developable surface patch, (b) a direction vector (i.e., a ruling)
sweeps along profile curves, (c) all the control points for each
profile curve, (d) parametric evaluation of profile curves, (e)
evaluated profile curves, and (f) parametric evaluation of contours.

82 International Journal of CAD/CAM Vol, 3, No. 2, pp, 77〜83

Fig. 8. Examples of GC generated 니sing proposed algorithms.

and corresponding profile c니rves; and (e) all the profile
curves. For display, we can adopt existing shading
algorithms for Bezier surfaces. If we want to generate
in-between contours, we can connect the points from
every profile curves evaluated at the same val니e in
sequential order, as in Fig. 7-(d). Note that, however, it
is not easy to generate a parametric form of profile
curves based on contour-wise evaluation as in
Algorithm 2.

6. Result and Discussion

Algorithms 2 and 3 are of complexities 0(〃 /) and
、respectively. (/?: the number of evaluated

contours, /: the number of direction vectors, nr. the
number of control contours) The overall computation
of proposed methods is fast enou응h to be implemented
in interactive geometric design applications.

Fig. 8 illustrates surface representation of generalized
cylinders defined by two cross-sectional poly흥。ns and
some of additional control shapes aiTanged on a straight-
line spine: (a) an onion-like shape in mesh representation,
(b)-(c) more complex examples using non-convex control
contours, (d) mesh representation of a bowl, and (e)-(g)
design of flowers using profiles curves of developable
surface patches. Note that (d) and (e) were modeled
usin응 the same contours.

Acknowledgements

This work has been supported in part by grant No.
A1-03-0021-00 (Dev이opmem on C이laborative Product
Commerce Technologies) of Korean Ministry of
Infomiation and Communication.

References

|1] Akman, V. and Arslan, A. (1992), “Swiping with all
graphical ingredients in a topological picturebook,
Computer &. Graphics, 16, 273-281.

|2| Bodduluri, R. M. C. and Ravani, B. (1993), “Design of
developable suriaces using duality between plane and
point geometries/' Computer-Aided Design、25(10), 621-
632.

[3] Carmo, M.P. do (1976), Differential Geometjy of Curves
and Surfaces, Prentice-Hall.

[4] Chang, T.-L, Lee, J.-H., Kim, M.-S. and Hong, S. J.
(1998), *'Direct manipulation of generalized cylinders
based on B-spline motion,M The Visual Computer, 14,
228-239.

[5] Gansca, I., Bronsvooil. W. F., Coman, G. and Tambulea,
L. (2002), "Self-intersection avoidance and integral
properties of generalized cylinders," Computer Aided
Geometric Design, 19(9), 695-707.

[이 Kim, M.-S., Park, E.-J. and Lee, H.-Y. (1994), “Modelling
and animation of generalized cylinders with variable
radius offset space curves,Journal of Visualization and
Computer A n i mat ion, 5, 189-207.

[7] Klok, E (1986), "Two moving coordinate frames for
sweeping along a 3D trajectory," Computer Aided
Geometric Design, 3. 217-229.

[8] Lee, J.-H.，(2003), Geometric Properties of Morphing
based on Direction Map: (II) Characteristics of
Intermediate Shapes, Preprint.

[이 Lee, J.-H., Lee, J. Y. Kim, H. and Kim, H.-S. (2003),
"Interactive Control of Geometric Shape Morphing based
on Minkowski Sum," Transactions on SCCE, 4, 317-380.

[1 이 Lee, J.-H., Kim, H. and Kim, H.-S. (2003), "Efficient
Computation and Control of Geometric Shape Morphing
based on Direction M叩,"Transactions on SCCE,
Acc 叩 led.

[11] Pottman, H. and Wallner, J. (1999), 'Approximation
algorithms for developable surfaces," Computer Aided
Geometric Design, 16, 539-556.

Joo-Haeng Lee, et al. Generalized Cylinder based on Linear Inteipolation by Direction Map 83

[12] Rossignac, J. and Kaul, A. (1994), AGRELs and BIPs:
Metamorphosis as a Bezier curve in the space of
Polyhedra, EUROGRAPHICS '94, C179-C184.

[1 이 Shapira, M. and Rappoport, A. (1995), "Shape blending
using the star-skeleton representation,IEEE Computer

Graphics & Applications, 15(2), 44-50.
[14] Vbogt, E. de, Helm, A. van der and Bronsvoort, W. F.

(2000), "Ray tracing defonned generalized cylinders,
The Visual Computer, 16, 197-207.

Joo-Haeng Lee received his BS, MS, and PhD in
Computer Science from POSTECH, Korea, in 1994. 1996
and 1999, respectiv이y. He joined ETRI (Electronics and
Telecommunications Research Institute), Korea in 1999, and is
a senior member of research staff of Software Robot Research
Team, ETRI. His research interests include geometric modeling
and processing for various applications such as computer
graphics, virtual reality, comp니ter-aided design, mobile robots,
and knowledge visualization.

Hyun Kim received the B.S., M.S. and Ph.D. degrees in the
department of mechanical design and manufacturing from
Hanyang University, Seoul, Korea, in 1984, 1987 and 1997,
respectively. He had worked for Systems Engineering Research
Institute (SERI) from 1990 to 1998. He joined ETRI in 1998
and has worked for the software development related to
engineering design such as CAD/CAM/CAE. Currently, he is a
project leader in Software Robot Research Team, ETRI. His
research interests include ConcuiTent Engineering, Web-enabled
CAD, Virtual Engineering and Collaborative Product Commerce.

Hyoung-Sun Kim received the M.S. degree in Computer
Engineering from Kwangwoon University, Seoul, Korea, in
1991, and is a PhD student in Computer Engineering of Daejeon
University, Korea, since 2001. He had worked for Systems
Engineering Research Institute (SERI) from 1986 to 1998. He
joined ETRI in 1998 and has worked for the software
development related to Concurrent Engineering s니ch as CPC.
Currently, he is principal researcher in Software Robot Research
Team, ETRI. His research interests include Concurrent
Engineering, Collaborative Product Commerce, Distributed
Computing, Information Security, and Distributed Database.

Joo-Haeng Lee Hyun Kim Hyo니ng-Sun Kim

