Kangweon-Kyungki Math. Jour. 11 (2003), No. 2, pp. 177-188

H-FUZZY SUPRATOPOLOGICAL SPACES

WON KEUN MIN, CHUN-KEE PARK AND MYEONG-WHAN KIM

ABSTRACT. We introduce the concepts of a gradation of supraopenness, $S(S^*)$ -gradation preserving maps, and weakly $S(S^*)$ -gradation preserving maps. And we investigate several properties of such concepts.

1. Introduction

Fuzzy topological spaces were first introduced in the literature by Chang [2] who studied a number of the basic concepts including fuzzy continuous maps and compactness. And fuzzy topological spaces are a very natural generalization of topological spaces. In [3], R. N. Hazra et.al introduced a new fuzzy topology and fuzzy topological space in terms of lattices L and L', both of which were taken to be I = [0, 1]. In this paper, we will call the new fuzzy topology an H-fuzzy topology. 0_X and 1_X will denote the characteristic functions of the crisp sets \emptyset and X, respectively. An H-fuzzy topological space [3] is a pair (X, τ) , where X is a non-empty set and $\tau : I^X \to I$ is a mapping satisfying the following properties:

(O1) $\tau(0_X) = \tau(1_X) = 1.$

(O2) If $\tau(A) > 0, \tau(B) > 0$, then $\tau(A \cap B) > 0$, for $A, B \in I^X$.

(O3) For every subfamily $\{A_i : i \in J\} \subset I^X$, if $\tau(A_i) > 0$, then $\tau(\bigcup_{i \in J} A_i) > 0$.

Then the mapping $\tau : I^X \to I$ is called an H-fuzzy topology or a gradation of openness on X.

If the H-fuzzy topoloy τ on X has the following property:

(O4) $\tau(I^X) \subset \{0,1\}$, then τ corresponds in a one to one way to a fuzzy topology in Chang's sense [2].

Received July 25, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 54A40.

Key words and phrases: H-fuzzy topology, gradation of supraopenness, $S(S^*)$ -gradation preserving maps, weakly $S(S^*)$ -gradation preserving maps.

A mapping $\tau^*: I^X \to I$ is called an H-fuzzy cotopology or a gradation closedness [3] iff the following three conditions are satisfied:

(C1) $\tau^*(0_X) = \tau^*(1_X) = 1.$

(C2) If $\tau^*(A), \tau^*(B) > 0$, then $\tau^*(A \cup B) > 0$, for $A, B \in I^X$.

(C3) For every subfamily $\{A_i : i \in J\} \subset I^X$, if $\tau^*(A_i) > 0$, then $\tau^*(\cap_{i \in J} A_i) > 0$.

If τ is an H-fuzzy topology on X, then a mapping $\tau^* : I^X \to I$, defined by $\tau^*(A) = \tau(A^c)$ where A^c denotes the complement of A, is an H-fuzzy cotopology. Conversely, if τ^* is an H-fuzzy cotopology on X, then a mapping $\tau : I^X \to I$, defined by $\tau(A) = \tau^*(A^c)$, is an H-fuzzy topology on X [3].

Let (X, τ) be an H-fuzzy topological space and $A \in I^X$. Then the H-fuzzy closure of A, denoted by A^- , is defined by

$$A^{-} = \cap \{ K \in I^{X} : \tau^{*}(K) > 0, A \subset K \},\$$

where $\tau^*(K) = \tau(K^c)$ [3].

Let $f: (X, \tau) \to (Y, \sigma)$ be a map between two H-fuzzy topological spaces. Then the mapping f is called a gradation preserving (gp-) map if $\tau(f^{-1}(A)) \ge \sigma(A)$ for each $A \in I^Y$. And the mapping f is called a weakly gradation preserving (wgp-) if $\sigma(U) > 0 \Rightarrow \tau(f^{-1}(U)) > 0$ for each $U \in I^Y$ [3].

In 1987, M. E. Abd El-Monsef et al.[1] introduced a fuzzy supratopology as the following way: A subclass τ of I^X is called a fuzzy supratopology for the set X if

(1) $0_X, 1_X \in \tau$.

(2) For every subfamily $\{A_i : i \in J\} \subset I^X, \cup_{i \in J} A_i \in \tau$.

And the pair (X, τ) is called a fuzzy supratopological space.

2. Gradations of supraopenness

DEFINITION 2.1. A gradation of supraopenness τ on X is a map $\tau: L^X \to L'$ satisfying the following properties, where L = L' = [0, 1]:

(S1) $\tau(0_X) = \tau(1_X) = 1.$

(S2) For every subfamily $\{A_i : i \in J\} \subset I^X$, if $\tau(A_i) > 0$, then $\tau(\bigcup_{i \in J} A_i) > 0$.

Then the pair (X, τ) is called an H-fuzzy supratopological space. If τ is a crisp (i.e. $L' = \{0, 1\}$), then the τ is a classical fuzzy supratopology on X [1].

DEFINITION 2.2. A mapping $\tau^*: I^X \to I$ is called a gradation of supraclosedness if the following two conditions are satisfied:

(C1) $\tau^*(0_X) = \tau^*(1_X) = 1.$

(C2) For every subfamily $\{A_i : i \in J\} \subset I^X$, if $\tau^*(A_i) > 0$, then $\tau^*(\cap_{i\in J}A_i) > 0.$

Obviously we get the following theorem from Definition 2.2.

THEOREM 2.3. (1) Let τ be a gradation of supraopenness on X and $\tau^*: I^X \to I$ be a mapping defined by $\tau^*(A) = \tau(A^c)$, where A^c is the complement of A. Then τ^* is a gradiation of supraclosedness on X.

(2) Let τ^* be a gradation of supraclosedness on X and $\tau: I^X \to I$ be a mapping defined by $\tau(A) = \tau^*(A^c)$. Then τ is a gradation of supraopenness on X.

Proof. (1). (C1) Obvious. (C2) For every subfamily $\{A_i : i \in A_i\}$ $J \subset I^X$, if $\tau^*(A_i) > 0$, then $\tau(A_i^c) > 0$. Since τ is a gradation of supraopenness, we get $\tau^*(\cap_{i \in J} A_i) = \tau(\bigcup_{i \in J} A_i^c) > 0$

(2). Similar to (1).

DEFINITION 2.4. Let τ and σ be the gradation of supraopenness on X. We say that τ is finer than σ or σ is coarser than τ (denoted by $\tau > \sigma$) is $\tau(A) \ge \sigma(A)$ for every $A \in I^X$.

DEFINITION 2.5. Let (X, τ) be an H-fuzzy supratopological space and $A \in I^X$. Then

(1) The H-fuzzy supraclosure of A, denoted by sl(A), is defined by

$$sl(A) = \cap \{ K \in I^X : \tau^*(K) > 0, A \subset K \},\$$

where $\tau^*(K) = \tau(K^c)$.

(2) The H-fuzzy suprainterior of A, denoted by si(A), is defined by

$$si(A) = \bigcup \{ K \in I^X : \tau(K) > 0, K \subset A \}.$$

THEOREM 2.6. Let (X, τ) be an H-fuzzy supratopoogical space and $A, B \in I^X$. Then

- $(1) \ si(1_X) = 1_X,$ $(2) \ si(A) \subset A,$ $(3) \ A \subset B \Rightarrow si(A) \subset si(B),$
- $(4) \ si(si(A)) = si(A),$

(5) $si(A \cap B) \subset si(A) \cap si(B)$.

Proof. (1),(2) and (3) can be obtained from Definition 2.5.

(4) For each $A \in I^X$, we get $\tau(si(A)) = \tau(\bigcup\{K \in I^X : \tau(K) > 0, K \subset A\})$ by Definition 2.5. Since τ is a gradation of supraopenness on X, we can say $\tau(si(A)) > 0$. Consequently we have si(si(A)) = si(A) from the concept of H-fuzzy suprainterior.

(5) From (2) we obtain $si(A \cap B) \subset si(A)$ and $si(A \cap B) \subset si(B)$, and so easily (5) is obtained.

The following example shows that the equality of Theorem 2.6(5) is not true in general.

EXAMPLE 2.7. Let X = I and $\tau : I^X \to I$ be defined by

$$\tau(A) = \begin{cases} 0, & \text{if } A(x) \le 1/2 \text{ for all } x \in X, \\ 1, & \text{otherwise,} \end{cases}$$

for each $A \in I^X - \{0_X\}$. Now we consider two fuzzy sets A, B defined as the following:

$$A(x) = x$$
, for all $x \in X$,
 $B(x) = 1 - x$, for all $x \in X$

Then $\tau(A) = \tau(B) = 1$, but $\tau(A \cap B) = 0$. Thus τ is a gradation of supraopennes. And we have $si(A) \cap si(B) = A \cap B$ and $si(A \cap B) = 0_X$, from the gradation τ of supraopenness. Thus $si(A) \cap si(B)$ is not equal to $si(A \cap B)$.

THEOREM 2.8. Let (X, τ) be an H-fuzzy supratopological space and $A, B \in I^X$. Then

(1) $sl(1_X) = 1_X,$ (2) $A \subset sl(A),$

$$\begin{array}{l} (3) \ A \subset B \Rightarrow sl(A) \subset sl(B), \\ (4) \ sl(A) = sl(sl(A)), \\ (5) \ sl(A) \cup sl(B) \subset sl(A \cup B). \end{array}$$

Proof. Similar to Theorem 2.6.

The following example shows the equality of Theorem 2.8(5) is not true in general.

EXAMPLE 2.9. Let X = I and $\tau : I^X \to I$ be a gradation of suraopenness defined as Example 2.7. Let two fuzzy sets A, B be defined as the following:

$$A(x) = x,$$
 for all $x \in X,$
 $B(x) = 1 - x,$ for all $x \in X.$

Since $\tau^*(A) = \tau(A^c) = \tau(B) > 0$ and $\tau^*(B) = \tau(B^c) = \tau(A) > 0$, we have A = sl(A) and B = sl(B). Let C be a fuzzy set such that $C \neq 1_X$ and $A \cup B \subset C$. Then $\tau^*(C) = \tau(C^c) = 0$, and so $sl(A \cup B) = 1_X$. Thus we have $sl(A) \cup sl(B) \neq sl(A \cup B)$.

THEOREM 2.10. Let (X, τ) be an H-fuzzy supratopological space and $A \in I^X$. Then

$$\begin{array}{l} (1) \ (si(A))^c = sl(A^c). \\ (2) \ (sl(A))^c = si(A^c). \end{array}$$

Proof. The proof is obtained from Definition 2.5.

THEOREM 2.11. Let (X, τ) be an H-fuzzy supratopological space and $A \in I^X$. Then

(1) $\tau(A) > 0$ iff A = si(A). (2) $\tau^*(A) > 0$ iff A = sl(A).

Proof. (1) Let $\tau(A) > 0$. Then $A \subset \bigcup \{K \in I^X : \tau(K) > 0, K \subset A\} = si(A)$. Hence we get A = si(A) from Theorem 2.6(2).

For the converse, let A = si(A). Then

$$\tau(A) = \tau(si(A)) = \tau(\cup \{K \in I^X : \tau(K) > 0, K \subset A\}).$$

Since τ is a gradation of supraopenness, we have $\tau(A) > 0$

(2) Similar to (1).

181

DEFINITION 2.12. Let (X, τ) be an H-fuzzy topological space and $A \in I^X$. Then the H-fuzzy interior of A, denoted by A^o , is defined by

$$A^o = \bigcup \{ K \in I^X : \tau(K) > 0, K \subset A \}.$$

THEOREM 2.13. Let (X, τ) be an H-fuzzy topological space and $A \in I^X$. Then

(1) $(A^{o})^{c} = (A^{c})^{-},$ (2) $(A^{-})^{c} = (A^{c})^{o},$ (3) $\tau(A) > 0$ iff $A = A^{o}.$

Proof. Similar to Theorem 2.10 and Theorem 2.11.

THEOREM 2.14. Let (X, τ) be an H-fuzzy topological space and $A \in I^X$. Then

(1) $1_X^o = 1_X$, (2) $A^o \subset A$, (3) $A \subset B \Rightarrow A^o \subset B^o$, (4) $(A^o)^o = A^o$, (5) $(A \cap B)^o = A^o \cap B^o$.

Proof. (1), (2) and (3) are obvious.

(4) For each $A \in I^X$, it is obvious $\tau(A^o) > 0$. So from Theorem 2.13(3), we get $(A^o)^o = A^o$.

(5) From (2) and (3), it is obvious $(A \cap B)^o \subset A^o \cap B^o$. Since $\tau(A^o) > 0, \tau(B^o) > 0$ and τ is a gradation of openness, we can say $\tau(A^o \cap B^o) > 0$. Therefore

$$A^{o} \cap B^{o} = (A^{o} \cap B^{o})^{o} \subset (A \cap B)^{o}.$$

Thus we have $A^o \cap B^o = (A \cap B)^o$.

DEFINITION 2.15. Let (X, τ) be an H-fuzzy topological space and τ_s be a gradation of supraopenness on X. We call τ_s an associated gradation of supraopenness with τ on X if for every $A \in I^X, \tau(A) \leq \tau_s(A)$.

Given a gradation of openness on X, we can find an associated gradation of supraopenness with τ as the following example shows.

EXAMPLE 2.16. Let (X, τ) be an H-fuzzy topological space. Define $\tau_s: I^X \to I$ as

$$\tau_s(A) = \begin{cases} \tau(A^o), & \text{if } A \subset A^{o-}, \\ 0, & \text{otherwise.} \end{cases}$$

Then clearly $\tau_s(0_X) = \tau_s(1_X) = 1$. For any index set J, let $\tau_s(A_i) > 0$ for all $i \in J$. Easily we can show $\cup A_i \subset (\cup A_i)^{o^-}$, and from Theorem 2.13 and Theorem 2.14, we get $\tau_s(\cup A_i) = \tau((\cup A_i)^o) > 0$. Thus τ_s is a gradation of supraopenness on X. Let $\tau(A) > 0$ for $A \in I^X$. Since $A \subset A^{o^-}$ and $\tau(A) = \tau(A^o)$, we have $\tau(A) \leq \tau_s(A)$ for each $A \in I^X$. Thus τ_s is an associated gradation of supraopenness with τ .

3. S-GRADATION PRESERVING MAPS.

DEFINITION 3.1. Let (X, τ) and (Y, σ) be H-fuzzy topological spaces and τ_s be an associated gradation of supraopenness with τ . The map $f: X \to Y$ is called

(1) an associated S-gradation preserving (S-gp-)map relative to τ_s if for each $A \in I^Y$,

$$\sigma(A) \le \tau_s(f^{-1}(A)).$$

(2) an associated weakly S-gradation preserving (wS-gp-)map relative to τ_s if for each $A \in I^Y$,

$$\sigma(A) > 0 \Rightarrow \tau_s(f^{-1}(A)) > 0.$$

The concepts of associated S-gradation preserving (S-gp-) maps and associated weakly S-gradation preserving (wS-gp-) maps depend on a given associated gradation of supraopenness. Thus if no confusion will arise, we simply call them S-gradation preserving (S-gp-) maps and weakly S-gradation preserving (wS-gp-) maps, respectively.

From the notions of S-gp-map and wS-gp-map, we get that S-gp-maps implie wS-gp-maps. However, the converse is not necessarily true as is evident from the following example.

EXAMPLE 3.2. Let A_1, A_2 be fuzzy subsets of X = I, defined as

$$A_1(x) = \begin{cases} 0, & \text{if } 0 \le x \le 1/2, \\ 2x - 1, & \text{if } 1/2 \le x \le 1; \end{cases}$$
$$A_2(x) = \begin{cases} 1, & \text{if } 0 \le x \le 1/4, \\ -4x + 2, & \text{if } 1/4 \le x \le 1/2, \\ 0, & \text{if } 1/2 \le x \le 1. \end{cases}$$

Let $\tau \colon I^X \to I$ be defined by

$$\tau(0_X) = \tau(1_X) = 1$$

$$\tau(A_1) = 1/2$$

$$\tau(A_2) = 1/3$$

$$\tau(A_3) = 1/4, \ A_3 = A_1 \cup A_2$$

$$\tau(B) = 0, \text{ if } B \neq A_i, i = 1, 2, 3.$$

Let $\sigma \colon I^X \to I$ be defined by

$$\sigma(0_X) = \sigma(1_X) = 1$$

$$\sigma(A_1) = 1/4$$

$$\sigma(A_2) = 1/3$$

$$\sigma(A_3) = 1/2, \ A_3 = A_1 \cup A_2$$

$$\sigma(B) = 0, \text{ if } B \neq A_i, i = 1, 2, 3.$$

We define $\tau_s: I^X \to I$ as

$$\tau_s(A) = \begin{cases} \tau(A^o), & \text{if } A \subset A^{o-} \\ 0, & \text{otherwise.} \end{cases}$$

Then the identity mapping $f: (X, \tau) \to (X, \sigma)$ is a wS-gp-map but not an S-gp-map.

THEOREM 3.3. Let $(X, \tau), (Y, \sigma)$ be H-fuzzy topological spaces and τ_s be an associated gradation of supraopenness with τ . If $f: X \to Y$ is a map, then the following are equivalent:

 $\begin{array}{l} (1) \ f \ \text{is a wS-gp-map,} \\ (2) \ \sigma^*(B) > 0 \Rightarrow \tau_s^*(f^{-1}(B)) > 0, \ \text{for } B \in I^Y, \\ (3) \ f(sl(A)) \subset f(A)^-, \ \text{for } A \in I^X, \\ (4) \ sl(f^{-1}(B)) \subset f^{-1}(B^-), \ \text{for } B \in I^Y, \\ (5) \ f^{-1}(B^o) \subset si(f^{-1}(B)), \ \text{for } B \in I^Y. \end{array}$

Proof. (1) \Rightarrow (2). Let $\sigma^*(B) > 0$ for $B \in I^Y$. Then we get $\sigma(B^c) > 0$, and so $\tau_s(f^{-1}(B^c)) > 0$ follows from (1). Finally we get $\tau_s^*(f^{-1}(B)) > 0$ by Theorem 2.3.

(2) \Rightarrow (3). For $A \in I^X$, it is obvious $\sigma^*(f(A)^-) > 0$ from Theorem 2.8 and Theorem 2.11. Thus we have $\tau_s^*(f^{-1}(f(A)^-)) > 0$ by the condition (2).

And $sl(f^{-1}(f(A)^{-})) = f^{-1}(f(A)^{-})$ follows from Theorem 2.11, so consequently we get $f(sl(A)) \subset f(A)^{-}$.

 $(3) \Rightarrow (4)$. It is obvious.

(4) \Rightarrow (5). Let $B \in I^Y$. Then $\sigma(B^o) > 0$ implies $\sigma^*((B^o)^c) > 0$. From the condition (4) and Theorem 2.14, we get

$$sl(f^{-1}(B^o)^c) \subset f^{-1}(((B^o)^c)^-) = f^{-1}((B^o)^c).$$

It is obtained $si(f^{-1}(B)) \subset f^{-1}(B^o)$ from Theorem 2.10.

 $(5) \Rightarrow (1)$. Suppose $\sigma(B) > 0$ for $B \in I^Y$, then $B = B^o$ and from the condition (5) we get $si(f^{-1}(B)) \supset f^{-1}(B^o) = f^{-1}(B)$.

It follows that $si(f^{-1}(B)) = f^{-1}(B)$. Thus from Theorem 2.11 and Definition 2.12, we get $\tau_s(f^{-1}(B)) > 0$.

THEOREM 3.4. Let $(X, \tau), (Y, \sigma)$ be H-fuzzy topological spaces and τ_s be an associated gradation of supraopenness with τ . A map f: $X \to Y$ is S-gradation preserving if and only if $\sigma^*(B) \leq \tau_s^*(f^{-1}(B))$, for $B \in I^Y$,

Proof. The proof is obvious from Theorem 2.3.

COROLLARY 3.5. Let $(X, \tau), (Y, \sigma)$ be H-fuzzy topological spaces and τ_s be an associated gradation of supraopenness with τ . If $f: X \to Y$ is an S-gp-map, then we have

(1) $f(sl(A)) \subset (f(A))^{-}$, for $A \in I^{X}$, (2) $sl(f^{-1}(B)) \subset f^{-1}(B^{-})$, for $B \in I^{Y}$, (3) $f^{-1}(B^{0}) \subset si(f^{-1}(B))$, for $B \in I^{Y}$.

DEFINITION 3.6. Let (X, τ) and (Y, σ) be H-fuzzy supratopological spaces. The map $f: X \to Y$ is called

(1) an S^{*}-gradation preserving(S^{*}-gp-)map, if for each $A \in I^Y$,

$$\sigma(A) \le \tau(f^{-1}(A)).$$

Won Keun Min, Chun-Kee Park and Myeong-Whan Kim

(2) a weakly S*-gradation preverving (wS*-gp-)map, if for each $A \in$ I^Y

$$\sigma(A) > 0 \Rightarrow \tau(f^{-1}(A)) > 0.$$

Clearly S^* -gp-map $\Rightarrow wS^*$ -gp-map but the converse may not be true.

EXAMPLE 3.7. Let τ , σ be two gradations of openness and let τ_s be an associated gradation of supraopenness defined as it in Example 3.2. And we define $\sigma_s: I^X \to I$ as $\sigma_s(A) = \sigma(A^o)$, if $A \subset A^{o-}$. Otherwise, $\sigma_s(A) = 0.$

Then the identity mapping $f: (X, \tau_s) \to (X, \sigma_s)$ is a wS^{*}-gp-map but not an S^* -gp-map.

THEOREM 3.8. Let $(X, \tau), (Y, \sigma)$ be H-fuzzy supratopological spaces. If $f: X \to Y$ is a map, then the following are equivalent: (1) f is a wS^* -gp-map, (2) $\sigma^*(B) > 0 \Rightarrow \tau^*(f^{-1}(B)) > 0$, for $B \in I^Y$,

(3) $f(sl(A)) \subset sl(f(A))$, for $A \in I^X$,

(4) $sl(f^{-1}(B)) \subset f^{-1}(sl(B)), \text{ for } B \in I^Y,$ (5) $f^{-1}(si(B)) \subset si(f^{-1}(B)), \text{ for } B \in I^Y.$

Proof. (1) \Rightarrow (2). Let $\sigma^*(B) > 0$ for $B \in I^Y$. Then $\sigma(B^c) > 0$, and from the condition (1) $\tau(f^{-1}(B^c)) > 0$. Thus we get $\tau^*(f^{-1}(B)) > 0$ by Theorem 2.3.

(2) \Rightarrow (3). For $A \in I^X$, we get $\tau^*(f^{-1}(sl(f(A)))) > 0$, since $\sigma^*(sl(f(A))) > 0$. It follows that $sl(f^{-1}(sl(f(A)))) = f^{-1}(sl(f(A)))$ from Theorem 2.11, and so we get $f(sl(A)) \subset f(A)^{-}$.

 $(3) \Rightarrow (4)$. It is obvious from the condition (3).

(4) \Rightarrow (5). Let $B \in I^Y$. Then $\sigma(si(B)) > 0$ implies $\sigma^*((si(B))^c) > 0$ 0. From the condition (4) and Theorem 2.10, we get

$$sl(f^{-1}(si(B))^c) \subset f^{-1}(sl((si(B))^c)) = f^{-1}((si(B))^c).$$

Thus we have $si(f^{-1}(B)) \subset f^{-1}(si(B))$.

(5) \Rightarrow (1). Suppose $\sigma(B) > 0$ for $B \in I^Y$. Then B = si(B) and from the condition (5) we get

$$si(f^{-1}(B)) \supset f^{-1}(si(B)) = f^{-1}(B)$$

Thus we get $\tau(f^{-1}(B)) > 0$.

THEOREM 3.9. Let (X, τ) and (Y, σ) be H-fuzzy supratopological spaces. A map $f: X \to Y$ is S^* -gradation preserving map if and only if $\sigma^*(B) \leq \tau^*(f^{-1}(B))$, for $B \in I^Y$.

Proof. Similar to Theorem 3.4.

The following corollary is obtained from Definition 3.6 and Theorem 3.8.

COROLLARY 3.10. Let $(X, \tau), (Y, \sigma)$ be H-fuzzy supratopological spaces. If $f: X \to Y$ is an S^* -gp-map, then we have $(1) f(sl(A)) \subset sl(f(A)), \text{ for } A \in I^X,$ $(2) sl(f^{-1}(B)) \subset f^{-1}(sl(B))), \text{ for } B \in I^Y,$ $(3) f^{-1}(si(B)) \subset si(f^{-1}(B)), \text{ for } B \in I^Y.$

DEFINITION 3.11. Let (X, τ) and (Y, σ) be H-fuzzy topological spaces and let τ_s and σ_s be associated gradations of supraopenness with τ and σ , respectively. The map $f: X \to Y$ is called

(1) an associated S^{*}-gradation preserving(S^{*}-gp-)map relative to τ_s and σ_s if for each $A \in I^Y$,

$$\sigma_s(A) \le \tau_s(f^{-1}(A)).$$

(2) an associated weakly S^* -gradation preserving(w S^* -gp-)map relative to τ_s and σ_s if for each $A \in I^Y$,

$$\sigma_s(A) > 0 \Rightarrow \tau_s(f^{-1}(A)) > 0.$$

The concepts of associated S^* -gradation preserving $(S^*$ -gp-)maps and associated weakly S^* -gradation preserving $(wS^*$ -gp-)maps depend on given associated gradations of supraopenness. Thus if no confusion will arise, we simply call them S^* -gradation preserving $(S^*$ -gp-)maps and weakly S^* -gradation preserving $(wS^*$ -gp-)maps, respectively.

REMARK. Let $(X, \tau), (Y, \sigma)$ be H-fuzzy topological spaces and let τ_s , σ_s be associated gradations of supraopenness with τ , σ , respectively. If $f: X \to Y$ is a map, we get the diagrams:

 $\operatorname{gp-map} \Rightarrow S\operatorname{-gp-map} \Leftarrow S^*\operatorname{-gp-map}.$

wgp-map \Rightarrow wS-gp-map \Leftarrow wS*-gp-map.

References

- M.E. Abd El-Monsef and A.E Ramadan, On fuzzy supra topology spaces, Indian J. Pure. Appl. 18(4) (1987), 322–329.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182–190.
- [3] R. N. Hazra, S. K. Samanta and Chattopashyay, *Fuzzy topology redefined*, Fuzzy Sets and Systems, 45 (1992), 79–82.
- [4] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338–353.

Won keun Min Department of Mathematics Kangwon National University Chuncheon 200-701, Korea *E-mail*: wkmin@cc.kangwon.ac.kr

Chun-Kee Park Department of Mathematics Kangwon National University Chuncheon 200-701, Korea *E-mail*: ckpark@kangwon.ac.kr

Myeong Whan Kim Department of Mathematics Kangwon National University Chuncheon 200-701, Korea *E-mail*: kimmh@kangwon.ac.kr