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G-FUZZY EQUIVALENCE RELATIONS
GENERATED BY FUZZY RELATIONS

INHEUNG CHON

ABSTRACT. We find a G-fuzzy equivalence relation generated by
the union of two G-fuzzy equivalence relations in a set, find a G-
fuzzy equivalence relation generated by a fuzzy relation in a set, and
find sufficient conditions for the composition p o v of two G-fuzzy
equivalence relations u and v to be a G-fuzzy equivalence relation
generated by p U v.

1. Introduction

The concept of a fuzzy relation was first proposed by Zadeh ([6]).
Subsequently, Goguen ([1]) and Sanchez ([5]) studied fuzzy relations in
various contexts. In [4] Nemitz discussed fuzzy equivalence relations,
fuzzy functions as fuzzy relations, and fuzzy partitions. Murali ([3])
developed some properties of fuzzy equivalence relations and certain
lattice theoretic properties of fuzzy equivalence relations. Gupta et al.
([2]) proposed a generalized definition of a fuzzy equivalence relation
on a set, which we call G-fuzzy equivalence relation in this paper, and
developed some properties of that relation. The present work has been
started as a continuation of these studies.

In section 2 we develop some basic properties of fuzzy relations,
find a G-fuzzy equivalence relation generated by the union of two G-
fuzzy equivalence relations in a set, find a G-fuzzy equivalence relation
generated by a fuzzy relation in a set, and show that if 4 and v are G-
fuzzy equivalence relations in a set such that pov = voupu, tien)f{ p(t,t) >
v(z,y), and tien)f( v(t,t) > u(z,y) for all z # y € X, then pov is a
G-fuzzy equivalence relation generated by pu U v.
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2. Fuzzy equivalence relation

DEFINITION 2.1. A function B from a set X to the closed unit
interval [0, 1] in R is called a fuzzy set in X. For every x € B, B(x) is
called a membership grade of x in B.

The standard definition of a fuzzy reflexive relation g in a set X
demands p(z,x) = 1. Gupta et al. ([2]) weakened this definition as
follows.

DEFINITION 2.2. A fuzzy relation p in a set X is a fuzzy subset of
X x X. pis G-reflexive in X if p(x,z) > 0 and p(z,y) < tin)f( wu(t,t)
€

for all x # y in X. p is symmetric in X if p(z,y) = p(y, z) for all x,y
in X. The composition A o u of two fuzzy relations A, u in X is the
fuzzy subset of X x X defined by

(Aop)(z,y) = sup min(A(z, 2), 1(2, y))-

A fuzzy relation p in X is transitive in X if popu C u. A fuzzy
relation p in X is called G-fuzzy equivalence relation if p is G-reflexive,
symmetric, and transitive.

PROPOSITION 2.3. Let Fx be the set of all fuzzy relations in a set
X. Then Fx is a monoid under the operation of composition o.

Proof. Clearly o is a binary operation. It is well known that o
is associative (see Proposition 2.3 of [3]). Let 6 be a fuzzy rela-
tion such that O(z,z) = 1 and 6(z,y) = 0 if © # y. Then (uo

0)(z,y) = sup min(u(z,2),0(z,y)) = p(z,y). Similarly we may show
zeX
(0o u)(x,y) = pu(x,y). Hence Fx is a monoid. O

It is easy to see that a G-fuzzy equivalence relation is an idempotent
element of Fx.

DEFINITION 2.4. Let u be a fuzzy relation in a set X. ! is defined
as a fuzzy relation in X by p=(z,y) = u(y, x).

It is easy to see that (uov)™! = v~Lopu™! for fuzzy relations y and
v.
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PROPOSITION 2.5. Let Fx be a monoid of all fuzzy relations in X
and let ¢ : Fx — Fx be a map defined by ¢(u) = u~*. Then ¢ is an
antiautomorphism and ¢(u=1) = (¢(u)) =t = p.

Proof. Since (u‘l)_l(ﬂc y) = pu~ (y, x) = p(x,y) for all z,y € X,
plp™t) = ()t = (cb;lt !

)L Since (pov)™t = v toput,
¢(MOV):(MOV)1:V ot =(v) o g(p). O

~—

PROPOSITION 2.6. Let p and each v; be fuzzy relations in a set X
for allt € I. Th ) = : , = .
or all i € 1. Then po(Uw) = U(uow), (Um) o= U (o),

N C . A C ) ]
po(Qw) S N (powi), and (Qwi)opn S O (viow)

Proof.
(ko (U v)](z,y) = sup minfu(z, z), (U vi)(z,y)]
el ZGX el
= sup min|u(z, 2),sup v;(z,y)]
ze€X i€l
= sup sup min[u(z, 2), (2, y)]
zeX 1€l
= sup sup min[u(z, z), vi(2,y)]
el zeX
= (ZLEJI o Vi)(xa y)
Similarly we may prove the remaining things. O

PROPOSITION 2.7. Let p and v be G-fuzzy equivalence relations in
a set X. Then uNv is a G-fuzzy equivalence relation.

Proof. (pNv)(z,z) =min(u(z,z),v(x,z)) > 0.
1tien)f( (nNv)(t,t) = 1tien)f( min(u(t,t), v(t,t))
= min (mf w(t,t), mf v(t,t))

> min (u(z,y), (w, y)) = (unv)(z,y)

for all  # y in X. That is, p N v is G-reflesive. (u Nv)(x,y) =
rnln(“(aj y) (ZC, y)) = mln(lu’(ya l‘), V(y7 ‘T)) = (:u N U)(y7 Zl)) By PI‘OpO—
sition 2.6, [(uNv)o (pNv)] € [po(pnu)Nve(pnv)] C[(pop) N
(o) N[(vou)N(wow) C 1N (mon)Nwom)Nu]Cpnv. O
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It is easy to see that even though p and v are G-fuzzy equivalence
relations, p U v is not necessarily a G-fuzzy equivalence relation. We
find a G-fuzzy equivalence relation generated by U v in the following
theorem.

THEOREM 2.8. Let pu and v be G-fuzzy equivalence relations in a
set X. The G-fuzzy equivalence relation generated by pUv is US2  (uU

V)" =(pUrv)U[(pUrv)o (pUr)U....
Proof. Clearly (nUv)(z,x) > 0.

inf (s Uw)(t,1) = inf max(a(t, 1), v(t,1))

= max (jnf u(t,1), inf v(t,1)

> max (u(z,y),v(z,y)) = (pUv)(z,y)

for all x # y in X. That is, p U v is G-reflexive. [(p U v) o (p U

v)(z,x) = Sup min[(pUv)(z, 2), (1Uv)(z, )] = min[(pUv)(z, z), (pU

v)(z,z)] > 0. tiél)f( [(pUv)o(pUp)|(t, t) = tiél)f( Sgg min[(pUv)(t, z), (uU

v)(2,8)] 2 nf minl(p U v)(¢,1), (kU v)()] = inf (pUV)(E1) 2
sup min{(p Uv)(@,2), (g Uv)(zy)) = ((pUv) o (pUv))(@y). That

(
is, (nUv)o (nUv) is G-reflexive. Similarly (u U v)™ is G-reflexive for
n=34,.... tien)f( (U9 ()" (t,t) = tiél)f( sup[(pUv)(t, t), (pUr)o(uU
v))(t,t),...] =sup [tien)g (nUv)(t,t), tien)f( (nUv)o (pUv))(t,t),...] >
sup[(p U v)(z,y), (pUv) o (nUw))(@,y),...] = [UpZi(pUv)"|(z,y).
Clearly [US2 ;(p U v)"|(x,z) > 0. Thus U2, (pn U )" is G-reflexive.

Clearly p U v is symmetric. [(pUv) o (uUv)|(z,y) = sup min[(p U
ze€X

V)@, z), (nUv)(z,9)] = sup min|(pUv)(y, 2), (1Uv)(z )] = [(nUv) e

(LUV)](y,x). That is, (nUv)o (uUv) is symmetric. Similarly we may
show (p U v)™ is symmetric for n = 3,4,.... [U2,(pUv)"|(x,y) =
supl( U ) (1, ), () 0 (1 U)) (@, 9), -] = supl (s U) (g, ), (U
v)o (puv))(y,z),...] = [Upli(nUv)"|(y, ). That is, U7, (nUv)" is
symmetric. Let p* = U2, (uUv)™ and let p; = pUwv. By Proposition
2.6, wrop* = proluU(pop)U(piopropm)U...] = [p"opu]Ulu"o
(n1op)]Up"o(propropr)]U-- = [(prop)U((propr)op)U...JU
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[(ao(urop))U((propr)o(prop))U...JU- - = [(popr)U(popo
p)U. . JU[(popropr)U. . JU-- - C p. That is, p* = Up2, (pUr)" is
transitive. Hence UY2 (U )™ is a G-fuzzy equivalence relation. Let
A be a G-fuzzy equivalence relations in a set X containing pUwv. Then

o (pUp)® CUS A" = AU (Ao AN)U(AoAoA)U--- CAUAU--- = .
That is, U2 ; (uUr)"™ is contained in every G-fuzzy equivalence relation
in X containing p U v. Thus U, (u U v)™ is a G-fuzzy equivalence
relation generated by pUwv. U

THEOREM 2.9. Let p be a fuzzy relation in a set X. Then G-
fuzzy equivalence relation in X generated by p is p* = Use,pul =
p1 U (pyop)U(uropyop)U. .., where py = pUp~t U@ and 6 is
a fuzzy relation in X such that 0(x,z) >0, 0 = 071, 0(z,y) < u(z,y),
and max[u(x,y),0(x,y)] < tien}; 0(t,t) for all x #y in X.

Proof. (U =" U0)(z, ) = max[u(w, ), p~ (2, 2), 0(z, 7)) > 0.
Jnf (U pTUO)(E ) = inf max(u(t¢), p7(8,1), O(t¢)]

> inf 0(t,t) > max{p(z,y), p~ (2,y), 0(z,y)]

= (pUptUh)(z,y).
Thus p; = pU p~t U# is G-reflexive. By the same way as shown in
Theorem 2.8, we may show p* = U>2 uf is G-reflexive.

p(z,y) = (pU R~ UO)(z,y) = max(u(z,y), n” " (z,y),0 " (z,y)]
= max[p ' (y,2), u(y, z), 0(y, z)]

= (,u U /~L_1 U ‘9)(y7 I) = Ml(ya x)
Thus p is a symmetric. By the same way as shown in Theorem 2.8,
we may show p* = UpZ,pul' is symmetric and transitive. Hence p*
is a G-fuzzy equivalence relation containing p. Let v be a G-fuzzy
equivalence relation containing pu. Then u(z,y) < v(z,y), p~H(z,y) =
uwly,z) < v(y,z) = v(z,y), and 0(z,y) < pz,y) < v(z,y). Thus

= ).
p = (pUp=t U0) S o (o pn)(z,y) = sup minfun(z, 2), (2, 9)] <
ze
sup min[v(z, 2),v(z,y)] = (vov)(x,y). Since v is transitive, 1 o pu; C
zeX
vov C v. Similarly we may show uf C v for n = 3,.... Thus

pr=prU(purop)U(uropyop) - Cu, O
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THEOREM 2.10. Let p and v be G-fuzzy equivalence relations in a
set X such that tin)ig wu(t, t) > v(z,y) and tjn)lg v(t,t) > u(z,y) for all
€ €

x#y€eX. Ifuov =vopu, then pov is a G-fuzzy equivalence relation
in X generated by pUwv.

Proof.

(nov)(x,z) = sup minfu(z, ), v(z, )]
ze€X

> min(u(x, x),v(x,z)) > 0.

. . S . S
Since tlen)f{ p(t,t) > v(z,y) and tlen)f{ v(t,t) > p(z,y) for all x #y € X,

nf (pov)(t,t) = inf sup min[u(t, z), v(2,t)]

> tien)f( minu(t, t), v(t,t)] > minfu(z, 2),v(z,y)]

for all z € X. Thus tien)f( (powv)(tt) > 31615 min[u(z, 2),v(z,y)] =
(o v)(x,y). That is, g o v is G-reflexive. Since p and v are sym-
metric, (uov)™ = v lopu™t = voyu = pov. Thus pov is
symmetric. Since p and v are transitive and the operation o is as-
sociative, (110 ¥) o (o) = po(vop) oy = po(uov)oy —
(op)o(rov) C powv. Hence pov is a G-fuzzy equivalence rela-

tion. Since v(y,y) > p(x,y), (nov)(x,y) = sup minfu(z, 2),v(z,y)] >
zeX

min(u(x,y), v(y,y)) = p(z,y). Since u(x,x) > v(x,y), (pov)(z,y) =

Sél)g min(u(x, 2),v(z,y)] > min(u(z,z),v(z,y)) = v(x,y). Thus (uo

v)(x,y) > max(u(x,y),v(z,y)) = (nUv)(z,y). That is, pUv C pow.
Let X\ be a G-fuzzy equivalence relation in X containing U v. Since
A is transitive, pov C (pUv)o (pUv) CAoXC A Thus povisa
G-fuzzy equivalence relation generated by p U v. 0J
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