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SOME PROPERTIES OF WEIGHTED HARMONIC

BERGMAN FUNCTIONS ON HALF-SPACES

Young-Chae Nah and HeungSu Yi

Abstract. On the setting of the upper half-space of the euclidean
space Rn, we show some properties of weighted harmonic Bergman
functions.

1. Introduction

For a fixed positive integer n > 1, let H = Rn−1 ×R+ be the upper
half-space where R+ denotes the set of all positive real numbers. We
write point z ∈ H as z = (z′, zn) where z′ ∈ Rn−1 and zn > 0.

For α > −1 and 1 ≤ p < ∞, let bp
α(H) denote weighted harmonic

Bergman space consisting of all real-valued harmonic functions u on H
such that

||u||Lp
α

:=

(∫

H

|u(z)|p dVα(z)

)1/p

< ∞,

where dVα(z) = zα
n dz and dz is the Lebesgue measure on Rn. We let

bp
α = bp

α(H). Then we can check easily that the space bp
α is a Banach

space with the usual weighted Lp-norm.
In this paper, we show some properties of bp

α as stated below. In
section 2, we review some basic results of the extended Poisson kernel.
In section 3 we show the b1

α-cancellation property, i.e., If u ∈ b1
α, then∫

H
u(z) dVα(z) = 0. we also find a necessary and sufficient condition for
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the space bp
α to have a positive harmonic function and then we show that

bp
α is not contained in bq

α if q is different from p.

Constants. Throughout the paper we use the same letter C to
denote various constants which may change at each occurrence. The
constant C may often depend on the dimension n and some other para-
meters, but it is always independent of particular points or parameters
under consideration. For nonnegative quantities A and B, we often write
A . B or B & A if A is dominated by B times some inessential positive
constant. Also, we write A ≈ B if A . B and A & B.

2. Preliminary Results

Let P (z, w) be the extended Poisson kernel on H, i.e.,

Pz(w) := P (z, w) =
2

nV (B)

zn + wn

|z − w|n(2.1)

where V (B) is the volume of the unit ball in Rn, z ∈ H, w ∈ H =
H ∪ ∂H, and w = (w′,−wn). Here ∂H = Rn−1 denote the boundary of
H. Note that for each fixed w ∈ H, P (z, w) is a positive and harmonic
function on H as a function of z. Note also that for each z ∈ H and for
every w ∈ H,

(2.2)

∫

∂H

P (z, w) dw′ = 1.

Also, we can show from (??) that for nonnegative integer k,

Dk
nP (z, 0) =

fk(z)

|z|n+2k
,(2.3)

where fk is a homogeneous polynomial of degree 1 + k.
The poisson integral of f ∈ Lp(∂H), for 1 ≤ p ≤ ∞, is the function

P [f ] on H defined by

P [f ](z) =

∫

∂H

P (z, t)f(t) dt.

Let k be a nonnegative integer. If u ∈ bp
α, then we know from the

mean value property, Jensen’s inequality and then Cauchy’s estimate
that

|Dk
nu(z)| . z−(n+α)/p−k

n
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for each z ∈ H. This shows that if u ∈ bp
α, then u is a bounded harmonic

function on every proper half-space contained in H. Thus we have

P [u(·, zn)](z′, δ) = u(z′, zn + δ)(2.4)

for δ > 0. (See [?] and [?] for details and related facts.)

3. Some Properties of bp
α

In this section, we show some properties of the weighted harmonic
Bergman functions. First we show the b1

α-cancellation property. To do
so, we need a lemma.

Lemma 1. If u ∈ b1
α, then ũ is decreasing on (0,∞), where

ũ(δ) =

∫

∂H

∣∣u(t, δ)
∣∣ dt

for δ > 0.

Proof. Suppose 0 < δ1 < δ2. Then we know from (??) that

u(t, δ2) = P [u(·, δ1)](t, δ2 − δ1).

Therefore we have
∣∣u(t, δ2)

∣∣ ≤
∫

∂H

∣∣u(s, δ1)
∣∣P(

(t, δ2 − δ1), s
)
ds.

Note that
P

(
(t, δ2 − δ1), s

)
= P

(
(s, δ2 − δ1), t

)

for every s, t ∈ ∂H. Integrating with respect to t and then using Fubini’s
theorem, we see from (??) that

ũ(δ2) =

∫

∂H

∣∣u(t, δ2)
∣∣ dt

≤
∫

∂H

∣∣u(s, δ1)
∣∣

∫

∂H

P
(
(s, δ2 − δ1), t

)
dt ds

= ũ(δ1),

as desired. Therefore the proof is complete.

As the above proof shows, the result of Lemma ?? holds if we only
assume that u equals the Poisson integral of its boundary values on every
proper half-space contained in H.

Now we are ready to prove the following theorem.
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Theorem 2. If u ∈ b1
α, then

∫

∂H

u(t, δ) dt = 0

for each δ > 0.

Proof. Fix δ > 0. Then we know from Lemma ?? that u(·, δ) ∈
L1(∂H). Also, we know from (??) that

u(z′, zn + δ) = P [u(·, δ)](z)

for every z ∈ H. Therefore we have from Fubini’s theorem and (??) that
∫

H

u(z′, zn + δ) dz =

∫ ∞

0

∫

∂H

∫

∂H

P (z, t)u(t, δ) dt dz′ dzn

=

∫ ∞

0

∫

∂H

(∫

∂H

P
(
(t, zn), z′

)
dz′

)
u(t, δ) dt dzn

=

∫ ∞

0

∫

∂H

u(t, δ) dt dzn.(3.1)

Because the inner integral in (??) is independent of zn, we must have
∫

∂H

u(t, δ) dt = 0.

Therefore the proof is complete.

As a corollary to the above theorem, we easily get the following b1
α-

cancellation property.

Corollary 3. If u ∈ b1
α, then
∫

H

u(z) dVα(z) = 0.

Now we find a necessary and sufficient condition for the space bp
α to

have a positive harmonic function. This means that certain bp
α spaces do

not contain any positive functions on the upper half-space and we can
not have this property on bounded domains.

Theorem 4. bp
α contains a positive harmonic function if and only if

p > (n + α)/(n− 1).
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Proof. Suppose that p > (n + α)/(n − 1). Let z0 = (0, 1) and let
u(z) = P (z, z0) for z ∈ H. Then clearly, u is a positive harmonic
function on H. Note from (??) that

∣∣P (z, z0)
∣∣p−1 . (zn + 1)−(n−1)(p−1).

Therefore we have from (??) that

‖u‖p
Lp

α
=

∫

H

|u(z)|pzα
n dz

.
∫ ∞

0

∫

∂H

P (z, z0) dz′
zα

n

(zn + 1)(n−1)(p−1)
dzn

=

∫ ∞

0

zα
n

(zn + 1)(n−1)(p−1)
dzn.(3.2)

Because α > −1 and (n−1)(p−1)−α > 1, the integral in (??) is finite.
Hence we see that u ∈ bp

α as desired.

Conversely, suppose u ∈ bp
α is positive on H. Then we know from [?]

that

u(z) = czn + P [µ](z)

for all z ∈ H, where c is a nonnegative constant and µ is a positive Borel
measure on ∂H satisfying

∫

∂H

dµ(t)

(1 + |t|)n
< ∞.

Because u ∈ bp
α, we must have c = 0. Since u is a positive harmonic

function, µ can not be the zero measure and so we can choose a compact
set K ⊂ ∂H satisfying µ(K) > 0. Let R = max{ |t| : t ∈ K}. Then we
see that

u(z) ≥ 2zn

nV (B)
(|z|+ R

)n µ(K)

& zn

(|z|+ 1)n
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on H. Thus we have from (??) that

∞ >

∫

H

|u(z)|pzα
n dz

&
∫

H

zp+α
n

(|z|+ 1)np
dz

&
∫ ∞

0

zp+α
n

(zn + 1)np−n+1
dz.

Because u ∈ bp, we must have np−n+1−p−α > 1, i.e., p > n/(n−1).
This completes the proof.

We close this paper by showing that on H, no Bergman space is
properly contained in another.

Theorem 5. If p 6= q, then bp
α does not contain bq

α.

Proof. Suppose to the contrary that bp
α ⊂ bq

α. Because convergence
in any Bergman space implies uniform convergence on compact subsets,
the closed graph theorem shows that the identity map from bp

α to bq
α is

bounded. Thus there exists a positive constant C satisfying

(3.3) ‖v‖Lq
α
≤ C‖v‖Lp

α

for all v ∈ bp
α.

To show that (??) fails, we choose a nonnegative integer k large
enough so that

(3.4) (n + k − 1)p > n + α, (n + k − 1)q > n + α.

Set u(z) = Dk
nP (z, 0) for z ∈ H. Then clearly u is harmonic on H and

we see from (??) that

u(z) =
fk(z)

|z|n+2k

for some homogenous polynomial of degree k + 1. Let uδ(z) = u
(
z +

(0, δ)
)

for δ > 0. Then clearly uδ is harmonic on H. We also see from
the homogeneity of f that

‖uδ‖p
Lp

α
=

∫

H

∣∣f(
z + (0, δ)

)∣∣p
∣∣z + (0, δ)

∣∣(n+2k)p
zα

n dz

=
δn+(k+1)p+α

δ(n+2k)p

∫

H

∣∣f(
z + (0, 1)

)∣∣p
∣∣z + (0, 1)

∣∣(n+2k)p
zα

n dz.(3.5)
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We see from (??) that the integral in (??) is finite. Thus,

‖uδ‖Lp
α
≈ δ(n+α)/p−n−k+1

and similarly we have

‖uδ‖Lq
α
≈ δ(n+α)/q−n−k+1.

Therefore

(3.6)
‖uδu‖Lq

α

‖uδu‖Lp
α

≈ δ(n+α)(1/q−1/p)

for all δ > 0. Because p 6= q, the right side of (??) is not a bounded
function of δ. Thus (??) fails and the proof is complete.
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