UNIVALENT FUNCTIONS ON $\Delta=\{z:|z|>1\}$

Sook Heui Jun

Abstract

In this paper, we obtain the sharp estimates for coefficients of harmonic, orientation-preserving, univalent mappings defined on $\Delta=\{z:|z|>1\}$ when harmonic mappings are of bounded variation on $|z|=1$.

1. Introduction

A continuous function $f=u+i v$ defined in a domain $D \subseteq \mathbb{C}$ is harmonic if u and v are real harmonic in D. Study of univalent harmonic functions is pioneered by J. G. Clunie and T. Sheil-Small. They[2] obtained a number of sharp results when a univalent harmonic orientation-preserving mapping f defined in $\mathbb{D}=\{z:|z|<1\}$ is convex, convex in one direction, or close-to-convex. Hengartner and Schober[4] studied the class Σ of all complex-valued, harmonic, orientation-preserving, univalent mappings f defined on $\Delta=\{z:|z|>$ $1\}$, which are normalized at infinity by $f(\infty)=\infty$. Such functions admit the representation

$$
\begin{equation*}
f(z)=h(z)+\overline{g(z)}+A \log |z| \tag{1}
\end{equation*}
$$

where $h(z)=\alpha z+\sum_{k=0}^{\infty} a_{k} z^{-k}$ and $g(z)=\beta z+\sum_{k=1}^{\infty} b_{k} z^{-k}$ are analytic in Δ and $0 \leq|\beta|<|\alpha|,|A| / 2 \leq|\alpha|+|\beta|$. In addition, $a=\overline{f_{\bar{z}}} / f_{z}$ is analytic and satisfies $|a(z)|<1$. In this paper, we obtain the sharp bounds for the Fourier coefficients of (1) when the harmonic mapping $f \in \Sigma$ is of bounded variation on $|z|=1$.

[^0]
2. Some Coefficient Estimates

Every homeomorphism of the unit circle onto a convex Jordan curve extends continuously to a univalent harmonic mapping of the unit disk \mathbb{D} onto a convex domain bounded by a Jordan curve. T. Radó posed this as a problem. H. Kneser [5] gave an elegant solution which uses the monodromy theorem to deduce global univalence from local univalence. In the converse direction, a univalent harmonic function which maps the unit disk \mathbb{D} onto a strictly convex domain bounded by a Jordan curve has a continuous extension to $\overline{\mathbb{D}}[1]$. We also have the same result for the function $f \in \Sigma$ which maps onto the exterior U of a strictly convex Jordan curve Γ.

Theorem 2.1. Suppose that f is a complex-valued, harmonic, orientation-preserving, univalent mapping from $\Delta=\{z:|z|>1\}$ onto the exterior U of a strictly convex Jordan curve Γ with $f(\infty)=\infty$. Then f has a continuous extension to $\bar{\Delta}$.

Proof. Since $f \in \Sigma, f$ has the representation (1). Consider $f(z)-$ $\alpha z-\overline{\beta z}-A \log |z|$. Then $f(1 / z)-\alpha / z-\overline{\beta / z}+A \log |z|$ is a bounded harmonic function in $|z|<1$. Thus $\operatorname{Lim}_{r \rightarrow 1^{-}}\left\{f\left(r^{-1} e^{-i \theta}\right)-\alpha r^{-1} e^{-i \theta}-\right.$ $\left.\bar{\beta} r^{-1} e^{i \theta}+A l o g r\right\}$ exists a.e. Therefore the radial limits $\operatorname{Lim}_{r \rightarrow 1^{+}} f\left(r e^{i \theta}\right)$ exists a.e. and belongs to Γ. A univalent analytic mapping ϕ from Δ onto U extends homeomorphically to $\bar{\Delta}$, and $\phi(\partial \Delta)=\Gamma$. Let $\Phi=\phi^{-1}$ in U. Then $\Phi \circ f$ is an orientation-preserving homeomorphism of Δ onto itself. Its radial limit function k exists and has modulus 1 a.e. on $\partial \Delta$. By redefining k on a set of measure zero, we may write $k\left(e^{i \theta}\right)=e^{i \eta(\theta)}$, where η is a nondecreasing function on \mathbb{R} and $\eta(\theta+2 \pi)=\eta(\theta)+2 \pi$. Define E to be the at most countable set of points $e^{i \theta}$ on $\partial \Delta$ that correspond to the discontinuities, which are finite jumps, of η. On $(\partial \Delta) \backslash E$ the function $\phi \circ k$ is continuous and its values belong to Γ. At the points of the countable set E, the function $\phi \circ k$ has one-sided limits, which also belong to Γ since Γ is closed. Now $\phi \circ k$ and the radial limit function of f agree almost everywhere, and so

$$
\begin{aligned}
f(z)-\alpha z & -\overline{\beta z}-A \log |z| \\
& =-\frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Re}\left[\frac{e^{i \theta}+z}{e^{i \theta}-z}\right]\left(\phi \circ k\left(e^{i \theta}\right)-\alpha e^{i \theta}-\bar{\beta} e^{-i \theta}\right) d \theta .
\end{aligned}
$$

Thus the unrestricted limits

$$
\operatorname{Lim}_{z \rightarrow e^{i \theta}}\{f(z)-\alpha z-\overline{\beta z}-\operatorname{Alog}|z|\}
$$

exist and are equal to $\phi \circ k-\alpha e^{i \theta}-\bar{\beta} e^{-i \theta}$ at all points of $(\partial \Delta) \backslash E$. Therefore we conclude that the unrestricted limits $\hat{f}\left(e^{i \theta}\right) \equiv \operatorname{Lim}_{z \rightarrow e^{i \theta}} f(z)$ exist and are equal to $\phi \circ k$ at all points of $(\partial \Delta) \backslash E$. Next, let $e^{i \theta_{0}}$ belong to E. Then the cluster set of f at θ_{0} is the straight-line segment joining $A_{0}=\operatorname{Lim}_{\theta \uparrow \theta_{0}} \hat{f}\left(e^{i \theta}\right)$ to $B_{0}=\operatorname{Lim}_{\theta \downarrow \theta_{0}} \hat{f}\left(e^{i \theta}\right)$. If $A_{0}=B_{0}$, then the cluster set is a singleton; so f has a limit and \hat{f} is continuous there. If $A_{0} \neq B_{0}$, then Γ would have to contain line segments corresponding to points of the discontinuity set. Since U^{c} is assumed to be strictly convex, the discontinuity set must be empty. Therefore f extends continuously to $\bar{\Delta}$.

Lemma 2.2. If $f \in \Sigma$ and f extends to be of bounded variation on $|z|=1$, then $L_{r} \leq L_{1}+6 \pi(|\alpha|+|\beta|)$ for $1 \leq r \leq 2$ where L_{r} denotes the length of $f(|z|=r)$.

Proof. If $\psi(z)=f(z)-\alpha z-\overline{\beta z}-A \log |z|$, then $\psi(\infty)=a_{0}$. For any partition $P=\left[t_{0}, t_{1}, \ldots, t_{N}\right]$ of $[0,2 \pi]$, the expression $\sum_{k=1}^{N} \mid \psi\left(z e^{i t_{k}}\right)-$ $\psi\left(z e^{i t_{k-1}}\right) \mid$ is a subharmonic function of z in $\Delta \cup\{\infty\}$. Hence, by the Maximum Principle for subharmonic functions, we have

$$
\sum_{k=1}^{N}\left|\psi\left(z e^{i t_{k}}\right)-\psi\left(z e^{i t_{k-1}}\right)\right| \leq \limsup _{|z| \rightarrow 1} \sum_{k=1}^{N}\left|\psi\left(z e^{i t_{k}}\right)-\psi\left(z e^{i t_{k-1}}\right)\right| .
$$

Since

$$
\begin{aligned}
& \sum_{k=1}^{N}\left|\psi\left(z e^{i t_{k}}\right)-\psi\left(z e^{i t_{k-1}}\right)\right| \\
= & \sum_{k=1}^{N}\left|f\left(z e^{i t_{k}}\right)-f\left(z e^{i t_{k-1}}\right)-\alpha\left(z e^{i t_{k}}-z e^{i t_{k-1}}\right)-\overline{\beta\left(z e^{i t_{k}}-z e^{i t_{k-1}}\right)}\right|
\end{aligned}
$$

, we have

$$
\begin{aligned}
& \sum_{k=1}^{N}\left\{\left|f\left(z e^{i t_{k}}\right)-f\left(z e^{i t_{k-1}}\right)\right|-\left|e^{i t_{k}}-e^{i t_{k-1}}\right|(|\alpha|+|\beta|)|z|\right\} \\
\leq & \sum_{k=1}^{N}\left|\psi\left(z e^{i t_{k}}\right)-\psi\left(z e^{i t_{k-1}}\right)\right| \\
\leq & \limsup _{|z| \rightarrow 1} \sum_{k=1}^{N}\left|\psi\left(z e^{i t_{k}}\right)-\psi\left(z e^{i t_{k-1}}\right)\right| \\
\leq & \limsup _{|z| \rightarrow 1} \sum_{k=1}^{N}\left\{\left|f\left(z e^{i t_{k}}\right)-f\left(z e^{i t_{k-1}}\right)\right|+(|\alpha|+|\beta|)|z|\left|e^{i t_{k}}-e^{i t_{k-1}}\right|\right\} \\
\leq & L_{1}+2 \pi(|\alpha|+|\beta|) .
\end{aligned}
$$

Thus this implies that

$$
\sum_{k=1}^{N}\left|f\left(z e^{i t_{k}}\right)-f\left(z e^{i t_{k-1}}\right)\right| \leq L_{1}+2 \pi(|\alpha|+|\beta|)(1+|z|)
$$

Let $z=r$, then

$$
\sum_{k=1}^{N}\left|f\left(r e^{i t_{k}}\right)-f\left(r e^{i t_{k-1}}\right)\right| \leq L_{1}+2 \pi(|\alpha|+|\beta|)(1+r)
$$

Since P is arbitrary, we have $L_{r} \leq L_{1}+2 \pi(|\alpha|+|\beta|)(1+r)$. For $r \leq 2, L_{r} \leq L_{1}+6 \pi(|\alpha|+|\beta|)$.

Theorem 2.3. If $f \in \Sigma$ and f extends to be of bounded variation on $|z|=1$, then

$$
\begin{gathered}
\left|\alpha+\bar{b}_{1}\right| \leq \frac{L_{1}}{2 \pi}, \quad\left|\beta+\bar{a}_{1}\right| \leq \frac{L_{1}}{2 \pi} \\
\left|b_{n}\right| \leq \frac{L_{1}}{2 n \pi} \quad \text { and } \quad\left|a_{n}\right| \leq \frac{L_{1}}{2 n \pi} \quad \text { for } n \geq 2
\end{gathered}
$$

where L_{1} is the length of $f(|z|=1)$. The first inequality $\left|\alpha+\bar{b}_{1}\right| \leq$ $L_{1} /(2 \pi)$ is sharp for the function $f(z)=z+i /(2 \bar{z})+(1 / 2) \log |z|$. The
inequality $\left|\beta+\bar{a}_{1}\right| \leq L_{1} /(2 \pi)$ is sharp for the function $f(z)=z-1 / \bar{z}+$ $2 \log |z|$. The inequalities $\left|b_{n}\right| \leq L_{1} /(2 n \pi)$ and $\left|a_{n}\right| \leq L_{1} /(2 n \pi)$ for $n \geq$ 2 are sharp for the function $f(z)=z-1 / \bar{z}+2 \arg \left(\frac{1+i / z}{1-i / z}\right)$.

Proof. Let n be any nonzero integer. Lemma 2.2 implies that the L_{r} 's are uniformly bounded for $1 \leq r \leq 2$. By the Helly selection theorem, there exists a sequence $\left\langle r_{k}\right\rangle$ such that $r_{k} \searrow 1$ and $\int_{|z|=r_{k}} z^{n} d f \rightarrow \int_{|z|=1} z^{n} d f$ as $k \rightarrow \infty$. Since

$$
\begin{aligned}
\int_{|z|=r_{k}} z^{n} d f= & \int_{|z|=r_{k}} z^{n}\left(f_{z} d z+f_{\bar{z}} d \bar{z}\right) \\
= & \int_{|z|=r_{k}} z^{n}\left\{\left(\alpha+\frac{A}{2 z}+\sum_{k=1}^{\infty} a_{k}(-k) z^{-k-1}\right) d z\right. \\
& \left.+\left(\bar{\beta}+\frac{A}{2 \bar{z}}+\sum_{k=1}^{\infty} \bar{b}_{k}(-k) \bar{z}^{-k-1}\right) d \bar{z}\right\} \\
= & \begin{cases}2 \pi i\left(\alpha+\bar{b}_{1} r_{k}^{-2}\right) & \text { if } n=-1 \\
2 \pi i\left(-n \bar{b}_{-n} r_{k}^{2 n}\right) & \text { if } n \leq-2 \\
2 \pi i\left(-a_{1}-r_{k}^{2} \bar{\beta}\right) & \text { if } n=1 \\
2 \pi i\left(-n a_{n}\right) & \text { if } n \geq 2,\end{cases}
\end{aligned}
$$

it follows that

$$
\frac{1}{2 \pi i} \int_{|z|=1} z^{n} d f= \begin{cases}\alpha+\bar{b}_{1} & \text { if } n=-1 \\ -n \bar{b}_{-n} & \text { if } n \leq-2 \\ -a_{1}-\bar{\beta} & \text { if } n=1 \\ -n a_{n} & \text { if } n \geq 2\end{cases}
$$

Since $\left|\int_{|z|=1} z^{n} d f\right| \leq \int_{|z|=1}|d f|=L_{1}$, we have

$$
\begin{gathered}
\left|\alpha+\bar{b}_{1}\right| \leq \frac{L_{1}}{2 \pi}, \quad\left|\beta+\bar{a}_{1}\right| \leq \frac{L_{1}}{2 \pi} \\
n\left|b_{n}\right| \leq \frac{L_{1}}{2 \pi} \quad \text { and } \quad n\left|a_{n}\right| \leq \frac{L_{1}}{2 \pi} \quad \text { for } n \geq 2
\end{gathered}
$$

These inequalities are equivalent to the desired ones.

Corollary 2.4. If $f \in \Sigma$ and $\mathbb{C} \backslash f(\Delta)$ is strictly convex, then

$$
\begin{gathered}
\left|\alpha+\bar{b}_{1}\right| \leq \frac{L}{2 \pi}, \quad\left|\beta+\bar{a}_{1}\right| \leq \frac{L}{2 \pi} \\
n\left|b_{n}\right| \leq \frac{L}{2 \pi} \quad \text { and } \quad n\left|a_{n}\right| \leq \frac{L}{2 \pi} \quad \text { for } n \geq 2
\end{gathered}
$$

where L is the length of $\partial(\mathbb{C} \backslash f(\Delta))$.
Proof. Since $f \in \Sigma$ and $\mathbb{C} \backslash f(\Delta)$ is strictly convex, f has a continuous extension to $\bar{\Delta}$ by Theorem 2.1. Thus f extends to be of bounded variation on $|z|=1$. The equalities follow directly from Theorem 2.3. \square

Corollary 2.5. If $f \in \Sigma$ and $f(\Delta)=\Delta$, then

$$
\begin{aligned}
& \quad\left|\alpha+\bar{b}_{1}\right| \leq 1, \quad\left|\beta+\bar{a}_{1}\right| \leq 1 \\
& \left|b_{n}\right| \leq \frac{1}{n} \quad \text { and } \quad\left|a_{n}\right| \leq \frac{1}{n} \quad \text { for } n \geq 2 .
\end{aligned}
$$

Proof. Since $\mathbb{C} \backslash \Delta$ is strictly convex and the unit circle has the length 2π, the inequalities follow directly from Corollary 2.4.

References

1. G. Choquet, Sur un type de transformation analytique généralisant la représentation conforme et définie au moyen de fonctions harmoniques, Bull. Sci. Math.(2) 69 (1945), 156-165.
2. J. G. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A.I 9 (1984), 3-25.
3. P. Duren and G. Schober, A variational method for harmonic mappings onto convex regions, Complex Variables Theory Appl. 9 (1987), 153-168.
4. W. Hengartner and G. Schober, Univalent harmonic functions, Trans. Amer. Math. Soc. 299 (1987), 1-31.
5. H. Kneser, Lösung der Aufgabe 41, Jahresber. Deutsch. Math.-Verein. 35 (1926), 123-124.

Department of Mathematics
Seoul Women's University
126 Kongnung 2-dong, Nowon-Gu
Seoul, 139-774, Korea

[^0]: Received April 14, 2003.
 2000 Mathematics Subject Classification: 30C15, 30C50.
 Key words and phrases: Harmonic, univalent functions.
 This work was supported by the research fund of Nat. Sci. Inst., Seoul Women's University, 2001.

