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UNIVALENT FUNCTIONS ON ∆ = {z : |z| > 1}

Sook Heui Jun

Abstract. In this paper, we obtain the sharp estimates for co-
efficients of harmonic, orientation-preserving, univalent mappings
defined on ∆ = {z : |z| > 1} when harmonic mappings are of
bounded variation on |z| = 1.

1. Introduction

A continuous function f = u + iv defined in a domain D ⊆ C
is harmonic if u and v are real harmonic in D. Study of univalent
harmonic functions is pioneered by J. G. Clunie and T. Sheil-Small.
They[2] obtained a number of sharp results when a univalent har-
monic orientation-preserving mapping f defined in D = {z : |z| < 1}
is convex, convex in one direction, or close-to-convex. Hengartner
and Schober[4] studied the class Σ of all complex-valued, harmonic,
orientation-preserving, univalent mappings f defined on ∆ = {z : |z| >
1}, which are normalized at infinity by f(∞) = ∞. Such functions ad-
mit the representation

(1) f(z) = h(z) + g(z) + Alog|z|

where h(z) = αz +
∑∞

k=0 akz−k and g(z) = βz +
∑∞

k=1 bkz−k are
analytic in ∆ and 0 ≤ |β| < |α|, |A|/2 ≤ |α| + |β|. In addition,
a = fz/fz is analytic and satisfies |a(z)| < 1. In this paper, we obtain
the sharp bounds for the Fourier coefficients of (1) when the harmonic
mapping f ∈ Σ is of bounded variation on |z| = 1.
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2. Some Coefficient Estimates

Every homeomorphism of the unit circle onto a convex Jordan curve
extends continuously to a univalent harmonic mapping of the unit disk
D onto a convex domain bounded by a Jordan curve. T. Radó posed
this as a problem. H. Kneser[5] gave an elegant solution which uses the
monodromy theorem to deduce global univalence from local univalence.
In the converse direction, a univalent harmonic function which maps
the unit disk D onto a strictly convex domain bounded by a Jordan
curve has a continuous extension to D[1]. We also have the same result
for the function f ∈ Σ which maps onto the exterior U of a strictly
convex Jordan curve Γ.

Theorem 2.1. Suppose that f is a complex-valued, harmonic,
orientation-preserving, univalent mapping from ∆ = {z : |z| > 1} onto
the exterior U of a strictly convex Jordan curve Γ with f(∞) = ∞.
Then f has a continuous extension to ∆.

Proof. Since f ∈ Σ, f has the representation (1). Consider f(z) −
αz − βz − Alog|z|. Then f(1/z) − α/z − β/z + Alog|z| is a bounded
harmonic function in |z| < 1. Thus Limr→1−{f(r−1e−iθ)−αr−1e−iθ−
βr−1eiθ+Alogr} exists a.e. Therefore the radial limits Limr→1+f(reiθ)
exists a.e. and belongs to Γ. A univalent analytic mapping φ from ∆
onto U extends homeomorphically to ∆, and φ(∂∆) = Γ. Let Φ = φ−1

in U . Then Φ◦f is an orientation-preserving homeomorphism of ∆ onto
itself. Its radial limit function k exists and has modulus 1 a.e. on ∂∆.
By redefining k on a set of measure zero, we may write k(eiθ) = eiη(θ),
where η is a nondecreasing function on R and η(θ + 2π) = η(θ) + 2π.
Define E to be the at most countable set of points eiθ on ∂∆ that
correspond to the discontinuities, which are finite jumps, of η. On
(∂∆) \ E the function φ ◦ k is continuous and its values belong to Γ.
At the points of the countable set E, the function φ ◦ k has one-sided
limits, which also belong to Γ since Γ is closed. Now φ ◦ k and the
radial limit function of f agree almost everywhere, and so

f(z)− αz − βz −Alog|z|

= − 1
2π

∫ 2π

0

Re

[
eiθ + z

eiθ − z

]
(φ ◦ k(eiθ)− αeiθ − βe−iθ)dθ.
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Thus the unrestricted limits

Limz→eiθ{f(z)− αz − βz −Alog|z|}

exist and are equal to φ◦k−αeiθ−βe−iθ at all points of (∂∆)\E. There-
fore we conclude that the unrestricted limits f̂(eiθ) ≡ Limz→eiθf(z)
exist and are equal to φ ◦ k at all points of (∂∆) \ E. Next, let eiθ0

belong to E. Then the cluster set of f at θ0 is the straight-line seg-
ment joining A0 = Limθ↑θ0 f̂(eiθ) to B0 = Limθ↓θ0 f̂(eiθ). If A0 = B0,
then the cluster set is a singleton; so f has a limit and f̂ is continuous
there. If A0 6= B0, then Γ would have to contain line segments cor-
responding to points of the discontinuity set. Since U c is assumed to
be strictly convex, the discontinuity set must be empty. Therefore f
extends continuously to ∆. ¤

Lemma 2.2. If f ∈ Σ and f extends to be of bounded variation on
|z| = 1, then Lr ≤ L1 + 6π(|α| + |β|) for 1 ≤ r ≤ 2 where Lr denotes
the length of f(|z| = r) .

Proof. If ψ(z) = f(z)−αz−βz−Alog|z|, then ψ(∞) = a0. For any
partition P = [t0, t1, . . . , tN ] of [0, 2π], the expression

∑N
k=1 |ψ(zeitk)−

ψ(zeitk−1)| is a subharmonic function of z in ∆ ∪ {∞}. Hence, by the
Maximum Principle for subharmonic functions, we have

N∑

k=1

|ψ(zeitk)− ψ(zeitk−1)| ≤ lim sup
|z|→1

N∑

k=1

|ψ(zeitk)− ψ(zeitk−1)|.

Since

N∑

k=1

|ψ(zeitk)− ψ(zeitk−1)|

=
N∑

k=1

|f(zeitk)− f(zeitk−1)− α(zeitk − zeitk−1)− β(zeitk − zeitk−1)|
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, we have

N∑

k=1

{|f(zeitk)− f(zeitk−1)| − |eitk − eitk−1 |(|α|+ |β|)|z|}

≤
N∑

k=1

|ψ(zeitk)− ψ(zeitk−1)|

≤ lim sup
|z|→1

N∑

k=1

|ψ(zeitk)− ψ(zeitk−1)|

≤ lim sup
|z|→1

N∑

k=1

{|f(zeitk)− f(zeitk−1)|+ (|α|+ |β|)|z||eitk − eitk−1 |}

≤L1 + 2π(|α|+ |β|).

Thus this implies that

N∑

k=1

|f(zeitk)− f(zeitk−1)| ≤ L1 + 2π(|α|+ |β|)(1 + |z|).

Let z = r, then

N∑

k=1

|f(reitk)− f(reitk−1)| ≤ L1 + 2π(|α|+ |β|)(1 + r).

Since P is arbitrary, we have Lr ≤ L1 + 2π(|α| + |β|)(1 + r). For
r ≤ 2, Lr ≤ L1 + 6π(|α|+ |β|). ¤

Theorem 2.3. If f ∈ Σ and f extends to be of bounded variation
on |z| = 1, then

|α + b1| ≤ L1

2π
, |β + a1| ≤ L1

2π
,

|bn| ≤ L1

2nπ
and |an| ≤ L1

2nπ
for n ≥ 2,

where L1 is the length of f(|z| = 1). The first inequality |α + b1| ≤
L1/(2π) is sharp for the function f(z) = z + i/(2z) + (1/2)log|z|. The
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inequality |β+a1| ≤ L1/(2π) is sharp for the function f(z) = z−1/z+
2log|z|. The inequalities |bn| ≤ L1/(2nπ) and |an| ≤ L1/(2nπ) for n ≥
2 are sharp for the function f(z) = z − 1/z + 2arg

(
1+i/z
1−i/z

)
.

Proof. Let n be any nonzero integer. Lemma 2.2 implies that
the Lr’s are uniformly bounded for 1 ≤ r ≤ 2. By the Helly se-
lection theorem, there exists a sequence 〈rk〉 such that rk ↘ 1 and∫
|z|=rk

zndf → ∫
|z|=1

zndf as k →∞. Since

∫

|z|=rk

zndf =
∫

|z|=rk

zn(fzdz + fzdz)

=
∫

|z|=rk

zn

{
(α +

A

2z
+

∞∑

k=1

ak(−k)z−k−1)dz

+(β +
A

2z
+

∞∑

k=1

bk(−k)z−k−1)dz

}

=





2πi(α + b1r
−2
k ) if n = −1

2πi(−nb−nr2n
k ) if n ≤ −2

2πi(−a1 − r2
kβ) if n = 1

2πi(−nan) if n ≥ 2,

it follows that

1
2πi

∫

|z|=1

zndf =





α + b1 if n = −1
−nb−n if n ≤ −2

−a1 − β if n = 1
−nan if n ≥ 2.

Since | ∫
|z|=1

zndf | ≤ ∫
|z|=1

|df | = L1, we have

|α + b1| ≤ L1

2π
, |β + a1| ≤ L1

2π
,

n|bn| ≤ L1

2π
and n|an| ≤ L1

2π
for n ≥ 2.

These inequalities are equivalent to the desired ones. ¤
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Corollary 2.4. If f ∈ Σ and C\f(∆) is strictly convex, then

|α + b1| ≤ L

2π
, |β + a1| ≤ L

2π
,

n|bn| ≤ L

2π
and n|an| ≤ L

2π
for n ≥ 2,

where L is the length of ∂(C\f(∆)).

Proof. Since f ∈ Σ and C\f(∆) is strictly convex, f has a continu-
ous extension to ∆ by Theorem 2.1. Thus f extends to be of bounded
variation on |z| = 1. The equalities follow directly from Theorem 2.3.¤

Corollary 2.5. If f ∈ Σ and f(∆) = ∆, then

|α + b1| ≤ 1, |β + a1| ≤ 1,

|bn| ≤ 1
n

and |an| ≤ 1
n

for n ≥ 2.

Proof. Since C\∆ is strictly convex and the unit circle has the length
2π, the inequalities follow directly from Corollary 2.4. ¤

References

1. G. Choquet, Sur un type de transformation analytique généralisant la représen-
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