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ALGEBRAIC OPERATIONS ON FUZZY
NUMBERS USING OF LINEAR FUNCTIONS

Jae Deuk Myung

Abstract. In this paper, we introduce two types of algebraic op-
erations on fuzzy numbers using piecewise linear functions and then
show that the Zadeh implication is smaller than the Diense-Rescher
implication, which is smaller than the Lukasiewicz implication. If
(f, ∗) is an available pair, then A∗mB ≤ A∗pB ≤ A∗jB.

1. Introduction

D. Dubois and H.Prade employed the extension principle to ex-
tend algebraic operations from crisp to fuzzy numbers([4], [5]). It
is well-known that for two continuous fuzzy numbers, the extension
principle method and the α − cut method are equivalent. In [2],
Chung introduced the Lmap-Min method to the extend algebraic op-
erations from crisp to fuzzy numbers using piecewise linear function
and minimum(∧). And it was proven that for two equipotent fuzzy
numbers, the Lmap-Min method and the extension principle method
are equivalent.

A fuzzy set is a function A on a set X to the unit interval. For any
α ∈ [0, 1], the α− cut of a fuzzy set A on a set X, Aα, is the crisp set
Aα = {x ∈ X|A(x) ≥ α}.

For any fuzzy set A on a set X, the support of A, A+0, is the set
{x ∈ X|A(x) > 0}.

A fuzzy set A on the set R of real numbers is said to be a fuzzy
number if it satisfies the following:

1) Aα is a non-empty closed interval for each α ∈ [0, 1]
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2) A+0 is a bounded interval.
3) A is continuous on S(A), where S(A) denotes the closure of A+0

in the real line R.
We use F (R) to denote the set of fuzzy numbers.
For a fuzzy number A, we write S(A)=[sA, SA] and A1=[mA,MA].
For a fuzzy number A, the left spread of A, L(A) is the interval

[sA,mA] and the right spread of A,R(A), is the interval [MA, SA].
A continuous binary operation ∗:R×R → R is said to be:
1) increasing(decreasing, resp.) if x < y, u < v imply x ∗ u < y ∗ v

(x ∗ u > y ∗ v, resp).
2) hybrid if v < y, x < u imply x ∗ y < u ∗ v.
Throughout this paper, we use ∗ to denote the continuous binary

operation on R.
Addition(+), meet (∧) and join(∨) are continuous increasing bi-

nary operations on R and subtraction(-) is a continuous hybrid binary
operation on R. Multiplication(×) is a continuous increasing binary
operation on [0,∞) and a continuous decreasing binary operation on
(−∞, 0].

[ExtensionPrinciple] [7]. For A,B ∈ F (R), we define a fuzzy set
on R, A∗eB, by the equation (A∗eB)(z) = ∨z=x∗yA(x) ∧B(y).

Remark 1. 1. If (A∗eB)(z) > 0, then there is a pair (x, y) ∈
S(A)× S(B) such that (A∗eB)(z) = A(x) ∧B(y). We call such a pair
the critical point of (A∗eB) with respect to z.

For two intervals [a, b] and [c, d], a linear function f :[a, b] → [c, d] is
said to be:

1) increasing if for each x ∈ [a, b], f(x) = d−c
b−a (x− a) + c,

2) decreasing if for each x ∈ [a, b], f(x) = c−d
b−a (x− a) + d.

For A,B ∈ F (R), a linear function f :S(A) → S(B) is said to be:
1) piecewise increasing if f |R(B)

R(A)
: R(A) → R(B), f |B1

A1 : A1 → B1

and f |L(B)
L(A)

: L(A) → L(B) are increasing linear functions.

2) piecewise decreasing if f |L(B)
R(A)

: R(A) → L(B), f |B1

A1 : A1 → B1

and f |R(B)
L(A)

: L(A) → R(B) are decreasing linear functions.
3) piecewise if it is piecewise increasing or piecewise decreasing.
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For A,B ∈ F (R) and a linear function f :S(A) → S(B), we use
i(A ∗B) to denote the set {x ∗ f(x)|x ∈ S(A)}.

Let A, B ∈ F (R) and f :S(A) → S(B) a piecewise linear function.
Then a pair (f, ∗) is called an available pair if it satisfies one of the
following:

1) f and ∗ are both increasing.
2) f is decreasing and ∗ is hybrid.

Proposition 1. 2. Let A,B ∈ F (R) and f :S(A) → S(B) be a
piecewise linear function. Then one has the following: 1) i(A ∗ B) is
a closed interval in R. 2) If (f, ∗) is an available pair, then i(A ∗B) =
{x ∗ y|x ∈ S(A), y ∈ S(B)}.

Proof. See[2].
[Lmap-Min Method] [2]. Let A,B ∈ F (R) and let f :S(A) → S(B)

be a piecewise linear function. Then, we define a fuzzy set on R,
A∗mB, as follows: (A∗mB)(z) = A(x) ∧ B(f(x)) if z = x ∗ f(x) for
some x ∈ S(A) and (A∗mB)(z) = 0 if z 6= x ∗ f(x) for any x ∈ S(A).
Then if (f, ∗) is an available pair, then A∗mB is a fuzzy number. ¤

Definition 1. 3. [2] Let A, B ∈ F (R). A piecewise linear function
f :S(A) → S(B) is said to be a shift (from A to B) if A(x) = B(f(x))
for each x ∈ S(A).

Definition 1. 4. [2] 1) Two fuzzy numbers A and B are said to be
i-equipotent(d-equipotent, resp.), symbolized as A ∼ B (A ' B, resp),
provided that there is an increasing(decreasing, resp.) shift from A to
B.

2) Two fuzzy numbers A and B are said to be equipotent if they are
i-equipotent or d-equipotent.

Theorem 1. 5. Let A,B ∈ F (R). Then one has the following:
1) If A ∼ B and ∗ are increasing, then A∗mB = A∗eB.
2) If A ' B is decreasing and ∗ are hybrid, then A∗mB = A∗eB.

Proof. See[2]. ¤

Definition 1. 6. A fuzzy number A is said to be positive(negative,
resp.) if S(A) ⊆ [0,∞) (S(A) ⊆ (−∞, 0], resp.).
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2. ALGEBRAIC OPERATIONS ON FUZZY NUMBERS

In the following theorem, we introduce the algebraic operation on
fuzzy numbers using piecewise linear functions and addition(+).

Theorem 2. 1. [Lmap-Addition Method] Let A,B ∈ F (R) and
f :S(A) → S(B) a piecewise linear function. Then, we define a fuzzy set
on R, A∗pB, as follows: (A∗pB)(z) = (A(x)+B(f(x)))/2 if z = x∗f(x)
for some x ∈ S(A) and (A∗pB)(z) = 0 if z 6= x∗f(x) for any x ∈ S(A).
If (f, ∗) is an available pair, then A∗pB is a fuzzy number.

Proof. 1) Suppose f and ∗ are both increasing. Since (A∗pB)+0 ⊆
i(A∗B) and i(A∗B) is bounded, (A∗pB)+0 is bounded. Since (A∗pB)1

6= 0 and for each α ∈ (0, 1], (A∗pB)1 ⊆ (A∗pB)α, (A∗pB)α 6= 0 for
each α ∈ (0, 1]. Suppose z1, z2 ∈ (A∗pB)α and z1 ≤ z ≤ z2. Since
(A∗pB)α ⊆ i(A ∗ B) and i(A ∗ B) is an interval, z ∈ i(A ∗ B) and so
there is x ∈ S(A) such that z = x∗f(x). Since z1, z2 ∈ (A∗pB)α, there
are x1, x2 ∈ S(A) such that z1 = x1 ∗ f(x1) and z2 = x2 ∗ f(x2). Since
f and ∗ are increasing, x1 ≤ x ≤ x2.
Case 1. x1 ≤ x ≤ mA ≤ x2: Then A(x1) ≤ A(x) and B(f(x1)) ≤

B(f(x)). Hence A(x1)+B(f(x1)) ≤ A(x)+B(f(x)) and so (A∗pB)(z)
≥ α.
Case 2. x1 ≤ mA ≤ x ≤ MA ≤ x2: Then A(x1) = 1 and B(f(x1)) = 1
and so (A∗pB)(z) ≥ α.
Case 3. x1 ≤ MA ≤ x ≤ x2: Then A(x2) ≤ A(x) and B(f(x2)) ≤

B(f(x)). Hence A(x2)+B(f(x2)) ≤ A(x)+B(f(x)) and so (A∗pB)(z)
≥ α.

Thus (A∗pB)(z) = (A(x)+B(f(x)))/2 ≥ α and hence z ∈ (A∗pB)α.
Therefore (A∗pB)α is an interval. Let z0 = inf(A∗pB)α. Then there
is a decreasing sequence < zn > in (A∗pB)α such that zn → z0. Then
for each n ∈ N there is xn ∈ S(A) such that zn = xn ∗ f(xn) and
(A(x) + B(f(x)))/2 ≥ α Since f and ∗ are increasing, < xn > is a
decreasing sequence in S(A). Since S(A) is bounded, there is x0 ∈ S(A)
such that xn → x0. Since A, B, f , + and ∗ are continuous, (A(xn) +
B(f(xn)))/2 → (A(x0)+B(f(x0)))/2 and zn → x0 ∗f(x0) = z0. Since
(A(xn) + B(f(xn)))/2 ≥ α for each n ∈ N , (A(x0) + B(f(x0)))/2 ≥ α
and so z0 ∈ (A∗pB)α. Similarly we have sup(A∗pB)α ∈ (A∗pB)α. In
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all, (A∗pB)α is a non-empty closed interval. Since f , ∗, A, B and +
are continuous, (A∗pB) is continuous. This completes the proof. ¤

Using the exactly same argument as for the case f and ∗ are both
increasing, the case where f is decreasing and ∗ is hybrid can be proved.

In the following theorem, we introduce the algebraic operation on
fuzzy numbers using piecewise linear functions and maximum(∨).

Theorem 2. 2. [Lmap-Max Method] Let A,B ∈ F (R) and f :S(A)
→ S(B) a piecewise linear function. Then, we define a fuzzy set on R,
A∗jB, as follows: (A∗jB)(z) = A(x)∨B(f(x)) if z = x∗f(x) for some
x ∈ S(A) and (A∗jB)(z) = 0 if z 6= x ∗ f(x) for any x ∈ S(A). If (f, ∗)
is an available pair, then A∗pB is a fuzzy number.

Proof. 1) Suppose f and ∗ are both increasing. Since (A∗jB)+0 ⊆
i(A∗B) and i(A∗B) is bounded, (A∗jB)+0 is bounded. Since (A∗jB)1

6= 0 and for each α ∈ (0, 1]. (A∗jB)1 ⊆ (A∗jB)α, (A∗pB)α 6= 0 for
each α ∈ (0, 1]. Suppose z1, z2 ∈ (A∗jB)α and z1 ≤ z ≤ z2. Since
(A∗jB)α ⊆ i(A ∗ B) and i(A ∗ B) is an interval, z ∈ i(A ∗ B) and so
there is x ∈ S(A) such that z = x∗f(x). Since z1, z2 ∈ (A∗jB)α, there
are x1, x2 ∈ S(A) such that z1 = x1 ∗ f(x1) and z2 = x2 ∗ f(x2). Since
f and ∗ are increasing, x1 ≤ x ≤ x2.
Case 1. x1 ≤ x ≤ mA ≤ x2: Then A(x1) ≤ A(x) and B(f(x1)) ≤

B(f(x)). Hence A(x1)∨B(f(x1)) ≤ A(x)∨B(f(x)) and so (A∗jB)(z)
≥ α.
Case 2. x1 ≤ mA ≤ x ≤ MA ≤ x2: Then A(x1) = 1 and B(f(x1)) = 1
and so (A∗jB)(z) ≥ α.
Case 3. x1 ≤ MA ≤ x ≤ x2: Then A(x2) ≤ A(x) and B(f(x2)) ≤

B(f(x)). Hence A(x2)∨B(f(x2)) ≤ A(x)∨B(f(x)) and so (A∗jB)(z)
≥ α.

Thus (A∗jB)(z) = A(x) ∨ B(f(x)) ≥ α and hence z ∈ (A∗jB)α.
Therefore (A∗jB)α is an interval. Let z0 = inf(A∗jB)α. Then there
is a decreasing sequence < zn > in (A∗jB)α such that zn → z0. Then
for each n ∈ N there is xn ∈ S(A) such that zn = xn ∗ f(xn) and
A(x)∨B(f(x)) ≥ α Since f and ∗ are increasing, < xn > is a decreasing
sequence in S(A). Since S(A) is bounded, there is x0 ∈ S(A) such that
xn → x0. Since A, B, f , ∨ and ∗ are continuous, A(xn)∨B(f(xn)) →
A(x0)∨B(f(x0)) and zn → x0∗f(x0) = z0. Since A(xn)∨B(f(xn)) ≥ α
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for each n ∈ N , A(x0)∨B(f(x0)) ≥ α and so z0 ∈ (A∗jB)α. Similarly
we have sup(A∗jB)α ∈ (A∗jB)α. In all, (A∗jB)α is a non-empty closed
interval. Since f , ∗, A, B and ∨ are continuous, (A∗jB) is continuous.
This completes the proof. ¤

Using the exactly same argument as for the case f and ∗ are both
increasing, the case where f is decreasing and ∗ is hybrid can be proved.

In the following two theorems, we show that {∗m, ∗p, ∗e and ∗j} is
a lattice.

Theorem 2. 3. Let A,B ∈ F (R). If (f, ∗) is an available pair,
then A∗mB ≤ A∗pB ≤ A∗jB.

Proof. Straightforward. ¤

Theorem 2. 4. Let A,B ∈ F (R). If (f, ∗) is an available pair,
then A∗mB ≤ A∗eB ≤ A∗jB.

Proof. Let (x0, y0) be the critical point of A∗eB with respect to
z ∈ i(A ∗ B) and x ∈ S(A) such that (A∗jB)(z) = A(x) ∨ B(f(x)).
Suppose that f and ∗ are both increasing. If x = x0, then (A∗eB)(z)
≤ (A∗jB)(z). Suppose x0 < x. Since f and ∗ are both increasing,
y0 ≥ f(x) and so A(x0) < A(x) or B(y0) < B(f(x)). Thus (A∗eB)(z)
≤ (A∗jB)(z). Suppose x0 > x. Since f and ∗ are both increasing,
y0 ≤ f(x) and so A(x0) < A(x) or B(y0) < B(f(x)). Thus (A∗eB)(z)
≤ (A∗jB)(z). Therefore A∗eB ≤ A∗jB. ¤

Using the exactly same argument as for the case f and ∗ are both
increasing, the case where f is decreasing and ∗ is hybrid can be proved.

Corollary 2. 5. Let A,B ∈ F (R). Then one has the following:

1) If A ∼ B and ∗ are increasing, then A∗mB = A∗pB = A∗eB =
A∗jB.

2) 1) If A ' B is decreasing and ∗ are hybrid, then A∗mB = A∗pB =
A∗eB = A∗jB.

Proof. Straightforward. ¤
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