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A parametric ldentification of Linear System in the Frequency Domain
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Abstract - This paper presents a proper rational transfer function synthesis in the continuous time system from noisy
measurements. The proposed method identifies the coefficients vector of the transfer function from an overdetermined
linear system that develops from rearranging the two dimensional system matrices and output vectors obtained from the
observed frequency responses. By computer simulation, the performance improvement is verified.
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1. Introduction

The system identification is the process of deriving a
mathematical model from observed data in accordance
with some predetermined criterion. The representation for
SISO (Single-Input Single-Output) system is described
by the ratio of Laplace transform for their input and
output signals. Many studies regarding parametric
identification methods, which also can be described as
synthesize the rational

complex curve fitting, to

polynomial transfer function have been reported
heretofore. Levy[1] introduced an approximation technique
to synthesize transfer function using an experimentally
obtained frequency response. Since that time, various
methods to compensate for the bias introduced in Levy's
scheme was given by many researchers. Sanathanan and
Koerner[2] introduced an iterative approach that should
eliminate any bias. Lawrence and Rogers[3] reformulated
the solution of the Ilinear least squares problem by
applying recursive least squares method. Stahl[4] proposed
the matrix adaptation method. Among these methods, any
bias problem can be eliminated using the iterative
approach, however the solution have been shown to

sometime converge to a local minimum. A review of
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parametric identification, transfer function, TLS, SVD

these methods and a mathematical representation were
given by Whitfield[5]. However, Whitfield's constraint
may give numerical problems if the constrained parameter
should be zero or close to zero. A survey of SISO
methods based on parametric identification was introduced
in [6], which led to the TLS(Total Least Squares)
solution. The presented formulation in [6] is also suffered
from the deficiencies as Levy’s estimate.

In this paper, we present a theoretical description for
the proper rational transfer function and a parametric
identification method via TLS. The proposed method
provides better low frequency fit and an computer aided
identification that estimates the vector of coefficients for
the numerator and denominator polynomial on the rational
transfer function from an overdetermined linear system
constructed by the observed noisy frequency responses.

2. Parametric ldentification

For a given set of experimental frequency response
data, the transient behavior of linear dynamic time-
invariant continuous time system shown in Fig. 1. is
described by

b(s, 0) 2 05"
G(s,0)= =, 1)
al(s, ©) a5
Pt
where  ©=[ay a;* a,_,: by by b,,]7, n>m, and
a,=1

The frequency response function of (1) is represented
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through magnitude | G(;w) | and phase ¢(®) in complex
plane.

G(jo,0)= | G(j) | e @)

input spectra

X(w)

output spectra

G, 9) (o)

Fig. 1. Linear dynamic time-invariant continuous time system

If the error function is weighted by the numerator
polynomial, we have accomplished better fits than Levy's
scheme from a following parametric optimization

. N 2
d— argmin : » O)— (i O
u l;\%;(]w,e) b(jo,0)—a(j,0) | @)

where &8 ngn A©) is the minimizing argument of AO)

and N is the number of measured frequency data. Then,

for any frequency ,, (1) can be rewritten by

o) = 3 6,G0) M+ N) @
O(w)) sin®(w,)
h _ Cos¥ d N—=— 8 .
where Mi="r oGy | ™ V=TT Gl |

We define the indices p, ¢, u, v =0 for m and p
either even or odd as follows

m=2k p="5" q="5—1
m=2k+1: p=gq="1

_ . _ .. n

n=2[0" u=v=" 1

n=20+1" u:ﬂ?L, v:%L—l

where £, [=0,1, 2, -
Hence (4) can be separated into the real and imaginary
parts as

u b
Yri = ‘ZO( - 1)Y¢l2x“)%Y*Mz'uZh( — 1) bye0¥ (5)
JFNiBiO(*l)ﬁszﬂw%ﬁH
v b
i = b;(_l)ﬁasz1‘“%6+1_Ni(;0(_1)ub2a‘°%u (6)

q
_Mipzo(_l)ﬁbzﬁﬂ‘”%ﬁﬂ
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where yp and y, are scalar values, and then it can be

classified by

n=40" yp=—0} y;=0
n=4l+1" yp=0 yz=—07
n=41+2 " yp=0} y;=0

n=40+3 " yp=0 y;=0f

By augmenting (5) and (6), define the equations in the
form of vectors

_ even . even o odd

Xpi=[ D% 0 & 2%" i 2%') (0
— : odd . even odd

xp=[0 i pF" i 2G” i 25] @)

O=[ayaya,: aasa,: bybyb,* b byb,1" (9)

where p@P'eRY, %= R?, and zjg.de R? are obtained
from (B), peR’, z9¥"eR’ and z{¥eR? are also
obtained from (6).

And then an overdetermined linear system XO =1y is

constructed, where Xe R +m+tD and ye RV are

referred to
X=[x£1~--x£i---x£N : xITIxITlx;V]T (10)
y:[J)Rl"'J)Rz'"'J/RN : y]l"'yli"'yIN]T an

A solution to this case is known as a LS(Least
Squares) problem. However, we could only use this
method, if we knew that the measurements are noise-free
and the assumed model is completely accurate. The TLS
is used to find the best fit to the overdetermined linear
system, when noise is on both sides of the equation. In
the case, E and ¢ are perturbations of X and v, then
(X+ E)©=(y+e¢) is satisfied. The TLS problem can be
formulated by the following optimization problem.

Igirel H [E:e] H , subjectto v+ e= Range(X+ ¢)(12)
s F

where | . |  denotes the Frobenius norm.
And the SVD(Singular Value

augmented matrix [X ! y]e R¥*F7+2 can be written

Decomposition)  of
as

D=UIX i y)v=] %O On o Oremia) ] (13)

where U=[wu; uy  usy] € RN and

V=_[v, vy

(n+m+2)x(n+m+2)
un+m+2]ER '



If the smallest singular value is repeated,
0120p220,30, 1= =0,,,.5>0 (14)

we can find a Householder matrix ¢ such that

[Vk1 Vkro Vntomsi2]@= V(I)/ Z] (15)

n
By the properties of the Householder matrix,
w=[z n]T is the vector in
Sc=span{ vy, Vpio, "y Uyt mio Such that the last

component of  [w,, | vpro VpsmaeolWw is maximized.

And the TLS solution[7,8] is obtained as the following

[_Q]J = (16)

3. Example
In order to evaluate the proposed method, we consider
the perturbed data for the transfer function of [6] in the

frequency range 10 ‘<w<10

B a17)

The transfer function obtained by Levy’s method[1,9] is

7 4843><1071 (18)

GLevy(s) = Sz +7.7051x10 1S+ 7.6329x10 ~ !

Whereas the transfer function identified by proposed
method is

9.1160x10 " (19)
$2+9.7767x10 " 1s+9.1202x10 !

Grin(s) =

The frequency responses of model (17) are represented in
Fig. 2 by the dotted lines, and the plus symbols (+)
represent the perturbed data. Furthermore the magnitude
and phase responses of Levy and proposed method are
illustrated in Fig. 2. From these figures, it can be noticed
that the suggested approach gives an improvement in the
low frequency range and accuracy.

4. Conclusions
In this paper, we presented the theoretical description

of the rational transfer function and the frequency domain
identification methods via the TLS algorithms to execute
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the best solutions against noise. The proposed parametric
optimization give an improved low frequency fit, because
the error function is biased by the magnitude of the
numerator polynomial. And consequently produce models
are simple, easy to implement and can be used to
automate the identification of the linear dynamic time-
invariant continuous time system. Comparison with the
previous results are carried out, and it also checked that
the better achieved. The
suggested algorithms may be used for the control system

frequency responses are

identification on the basis of frequency responses and
various tuning techniques.

25 T T

MAGNITUDE [dB]

-2.5

L

1

Data
Model
Levy
Kim

+ o+ o+

10

(a)

2

FREQUENCY [rad/sec]

log magnitude

10°

1

PHASE [degree]

-100

Data
Model
Levy
Kim

+ o+ +

-120 - —
10” 10" 10” 10
FREQUENCY [rad/sec]

(b) phase
Fig. 2 Freguency responses

Reference
[1] E. C. Levy, “Complex—-curve Fitting”, IRE Trans. on

Auto. Cont, vol. AC-4, pp. 37-44, 1959.
[2] C. K. Sanathanan and J. Koerner, “Transfer Function

83



BREBFHNE 52P% 258 2003%F 67

Synthesis as a Ratio of Two Complex Polynomials”,
IEEE Trans. on Auto. Cont, vol. 8, no. 1, pp. 56-58,
1963.

[3] P. J. Lawrence and G. J. Rogers,
Transfer Function Synthesis from Measured Data”,
Proc. IEE, vol. 126, no. 1, pp. 104-106, 1979.

[4] H. Stahl, Synthesis
Frequency Response Data”, Int. J. Cont., vol. 39, no.
3, pp. 541-550, 1984.

[5] A. H. Whitfield, “Transfer Function Synthesis using

Int. J. Cont., vol. 43, pp.

“Sequential

“Transfer Function Using

Frequency Response Data”,
1413-1426, 1986.

[6] R. Pintelon, P. Guillaume, Y. Rolain, J. Schoukens,
and H. Van hamme, “Parametric Identification of
Transfer Functions in the Frequency Domain - A
Survey”, IEEE Trans. on Auto. Cont, vol. 39, no. 11,
pp. 2245-2260, 1994.

[7]1 S. Van Huffel and J. Vandewalle,

Computational

The Total Least

Squares  Problem Aspects and
Analysis, SIAM, 1991.

[8] T. K. Moon and W. C. Stirling,
Methods and Algorithms for
Prentice Hall, 2000.

[9] J. N. Little and L. Shure, Signal Processing Toolbox,

The Mathwork Inc., 1992.

Mathematical

Signal Processing,

of & & (& # ##)

19889 FHO A7Estd &4, 19914

=4 (XA,

1998 suigte d71Fs (A,

1999Lﬂ ~2000 (55) A REIA Tl
, 2000 ~ & A Ak A7 QB

%Ei T g

el : 051) 510-2497

x : 051) 513-0212

leehyuk@pusan.ac.kr

OH

E-mail :

84

el : 043) 261-3330
x : 043) 261-3280
E-mail :

Tel : 043) 649-3211
Fax @ 043) 645-9170
E-mail :

A 71EMEA, 2001
A7 A FE E e

kimjusik@chungbuk.ac.kr

A (B F )
& A7lesta 4, 19874
71533 E‘ﬂ(“*}) 20004

shjeong @daewon.ac.kr

. 24 EZ (% E R
Y 19909 shRd) Avlwely 9, 19929
CFET L Eg gse dArFss EQAAD,
gg 19929 ~1997d (A A=A F4A A 7]
“ A2, 19993 ~ A S A7])F
st} wpabatA.
el 1 043) 261-2419
X © 043) 261-3280
E-mail : tofuture2000@yahoo.co.kr
(E & *)

Tel : 043) 841-5464
Fax @ 043) 841-5478
E-mail :

A7 Bes £, 19934
1B EQAHAD, 20004
71& 83 E5 (A, 20009
ANAARARTAR 2

<l

keumbkang @hanmail.net



