Steinhaus Graphs with Minimum Degree Two

Donguu Kim and Daekeun Lim
Department of Mathematics, Keimyung University, Daegu 704-701, Korea
e-mail : dongjukim@hanmail.net

Abstract. In this paper, we classify the Steinhaus graphs with minimum degree two.

1. Introduction

Let $T=a_{12} a_{13} \cdots a_{1 n}$ be an ($n-1$)-long string of zeros and ones. The Steinhaus graph G, generated by T has as its adjacency matrix, the Steinhaus matrix, $A(G)=$ $\left[a_{i j}\right]$ which is obtained from the following, called the Steinhaus property:

$$
a_{i j}=\left\{\begin{array}{cl}
0 & \text { if } 1 \leq i=j \leq n \\
a_{i-1, j-1}+a_{i-1, j} & (\bmod 2) \\
a_{j i} & \text { if } 1<i<j \leq n \\
& \text { if } 1 \leq j<i \leq n
\end{array}\right.
$$

In this case, T is called the generating string of G. A Steinhaus triangle is the upper-triangular part of a Steinhaus matrix (excluding the diagonal) and hence, is generated by the first row (which is the generating string) in the triangle. It is obvious that there are exactly 2^{n-1} Steinhaus graphs of order n. The vertices of a Steinhaus graph are usually labelled by their corresponding row numbers. In Figure 1, the Steinhaus graph generated by 0110110 is pictured.

Let G be a Steinhaus graph of order n generated by $T=a_{12} a_{13} \cdots a_{1 n}$. The partner of $G, P(G)$, is the Steinhaus graph generated by the reverse of the last column of the adjacency matrix of G, i.e., $a_{n-1, n} a_{n-2, n} \cdots a_{1 n}$ is the generating string of $P(G)$. Note that a Steinhaus graph G is isomorphic to its partner $P(G)$. For further results for Steinhaus graphs (See [2], [3], [4] and [6]).

We often prefer to think the sequence of zeros and ones that generates a Steinhaus graph as a number. Since the sequence 0110110 generates the graph in Figure 1 , we say that this graph is generated by $k=54=(110110)_{2}$. Hence the graph with n vertices generated by k will be denoted $H_{n, k}$. In Figure 1, the Steinhaus graph is denoted by $H_{8,54}$.

Received October 28, 2002.
2000 Mathematics Subject Classification: 05C50.
Key words and phrases: Steinhaus graph, connectivity, pendent vertex, generating string.
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$
1
2
3
4
5
6
7
8 $\quad\left[\begin{array}{llllllll}0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0\end{array}\right]$

Figure 1. Steinhaus graph with the generating string 0110110

We now give some basic graph theoretical definitions. Let G be a graph. A cut vertex in G is a vertex whose deletion increases the number of components. Similarly, an edge in G is called a bridge if its deletion increases the number of components. A pendent vertex in G is a vertex of degree one. Let G be a connected graph. Let W be a set of vertices or a set of edges. If $G-W$ is disconnected, then we say that W separates G. We say that G is k-connected $(k \geq 2)$ if no set of $k-1$ or fewer vertices separates it. Similarly, G is k-edge-connected $(k \geq 2)$ if no set of at most $k-1$ edges separates it. As is usual, $|X|$ is the cardinality of a set X. We denote $\log _{2}(x)$ by $\lg (x)$. Any definitions not given here can be found in [1].

Now, we give some results relating to connectivity of Steinhaus graphs.
Theorem 1.1 ([5], [6]). Let $n>5$ and let G be a nonempty Steinhaus graph of order n. Then the following statements are equivalent.
(1) G is 2-connected.
(2) G is 2-edge-connected.
(3) G has no pendent vertices.

Theorem 1.2 ([6]). A Steinhaus graph G is 3-edge-connected if and only if its minimum degree $\delta(G)$ is larger than two.

Theorem 1.3 ([6]). G is a Steinhaus graph with $\delta(G) \geq 3$ if and only if G is 3 -connected unless G is one of the followings:
$D_{2 m}$, for $m \geq 5$;
$E_{2 m}$, for $m \geq 3$;
$H_{6,27}=P\left(H_{6,13}\right) ; H_{7,27}=P\left(H_{7,45}\right) ; H_{8,19}=P\left(H_{8,37}\right) ; H_{8,55}=P\left(H_{8,73}\right) ; H_{8,54}$ and $H_{9,37}=P\left(H_{9,147}\right)$,
where D_{n} is the Steinhaus graph generated by the $(n-1)$-long sequence

$$
0 \overbrace{\underline{10} \underline{10} \cdots \underline{10}}^{(m-2)} 00
$$

when n is even and E_{n} is the Steinhaus graph generated by the $(n-1)$-long sequence $\overbrace{}^{(m-2)}{ }^{\text {times }}$
$1 \overbrace{01 \quad \underline{01} \cdots \underline{01}} 10$ when n is even.

Note that the all graphs in Theorem 1.3 are 3-edge-connected.
Theorem 1.4 ([5]). Let $n>5$ and let $p(n)$ be the number of Steinhaus graphs of order n having a pendent vertex. Then

$$
p(n)=2 \sum_{i=1}^{n-1} \delta_{i}-\sum_{j=2}^{\left\lfloor\frac{n+2}{2}\right\rfloor} \epsilon_{j},
$$

where $\delta_{i}=\min \left\{2^{m}, n-i\right\}$ for the nonnegative integer m such that $2^{m-1}<i \leq 2^{m}$ and where

$$
\epsilon_{j}=\left\{\begin{array}{cc}
1 & \text { if } 2^{\lceil l g(j-1)\rceil} \text { divides } n-j+1 ; \\
0 & \text { otherwise } .
\end{array}\right.
$$

Therefore, the number of 2-connected and 2-edge-connected Steinhaus graphs is equal to $2^{n-1}-p(n)-1$.

2. Minimum degree two in Steinhaus graphs

In this section, we give an equivalent expressions for Steinhaus graphs of minimum degree two. It will be useful to denote by $G_{n}(k ; i, j)$ the Steinhaus graph of order n generated by the string $a_{k i}=1=a_{k j}$ and $a_{k l}=0$ for all l except for $i, j(i<j)$. Thus the degree of vertex k is two.

We denote S_{n} to be the collection of all Steinhaus graphs of order n. We set

$$
A \equiv\left\{G_{n}(k ; i, j) \mid i<j<k, \quad i<k<j \text { or } k<i<j\right\}
$$

Then

$$
\left\{G \in S_{n} \mid \delta(G)=2\right\}=\{G \in A \mid \delta(G)=2\} .
$$

Figure 2. Pascal's square of length 8

Set $A_{1}=\left\{G_{n}(k ; i, j) \mid i<j<k\right\}, A_{2}=\left\{G_{n}(k ; i, j) \mid i<k<j\right\}$ and $A_{3}=$ $\left\{G_{n}(k ; i, j) \mid k<i<j\right\}$. Then $A=A_{1} \cup A_{2} \cup A_{3}$. So,

$$
\left\{G \in S_{n} \mid \delta(G)=2\right\}=\bigcup_{i=1}^{3}\left\{G \in A_{i} \mid \delta(G)=2\right\}
$$

We now present some facts concerning Pascal's triangle modulo two. The rows of the triangle are labelled R_{1}, R_{2}, \cdots, and so the r th element of R_{p} is $\binom{p-1}{r-1}(\bmod 2)$. If Q is a string of zeros and ones, then Q^{s} is the string Q concatenated with itself $s-1$ times. For example, if $Q=01$, then $Q^{4}=01010101$. Similarly, if Q is a matrix, then Q^{s} is the string Q concatenated with itself $s-1$ times. Observe that $R_{2^{m}}=1^{2^{m}}$ because $\binom{2^{m}-1}{r}$ is odd for $0 \leq r \leq 2^{m}-1$. Let

$$
R_{t}^{p}=R_{t} 0^{p-t}
$$

Then Pascal's square of length p consists of p rows $R_{1}^{p}, R_{2}^{p}, \cdots, R_{p}^{p}$ (see Figure 2).
From now, we give expressions relating to the parameters n, k, i, j which is equivalent to minimum degree two in Steinhaus graphs.

Figure 3.

Lemma 2.1. Let $G=G_{n}(k ; i, j) \in A_{1}$ with $j-i=2^{m}$. Then G has a pendent vertex if and only if G satisfies one of the followings:
(a) $n-k \geq 2^{m}$.
(b) $n-k \leq 2^{m}$ and $j=d 2^{q}$ for some d, where $q=\lceil l g(k-i)\rceil$.
(c) $k=n, i \leq 2^{m}$ and $n-j+1 \leq 2^{m}$.
(d) $j<k+2^{m}-2^{l}$, where $l=\lceil l g(j)\rceil$.

Proof. Let v be a pendent vertex in G. Let $l=\lceil l g(j)\rceil$ and so $2^{l-1}<j \leq 2^{l}$. Since k is of degree two, v is not equal to k. We put $B=\left(a_{p q}\right)$ for $p=1,2, \cdots, j$ and $q=j+1, j+2, \cdots, n$. Then from figure 3 , it is not difficult to see that B is the form $U W^{s} V$, where W is Pascal's square of length 2^{l} from row $2^{l}-j+1$ to row $2^{l}, V$ is a prefix of W and U is a suffix of W. In Figure 3, it is illustrated for $s=3$, $l=3$, the rectangle W consists of 7 rows $R_{2}^{8}, R_{3}^{8}, \cdots, R_{8}^{8}, U$ is identical to the last 2 columns of W and V is identical to the first 3 columns of W. By the Steinhaus property,

$$
\begin{equation*}
a_{r, k-i+r}=1 \quad \text { for } r=1,2, \cdots, i \tag{1}
\end{equation*}
$$

Figure 4.

Case (i): $v=1$.
By (1), vertex v is adjacent to the vertex $k-i+1$. Also, $a_{1, k+2^{m}+1}=1$. Since v is a pendent vertex, $k+2^{m}+1>n$. So $n-k \leq 2^{m}$. Let $q=\lceil l g(k-i)\rceil$ and so $2^{q-1}<k-i \leq 2^{q}$. As depicted in Figure 4, the Steinhaus matrix $A(G)$ mainly consists of copies of a deleted form of the first 2^{q} rows of Pascal's triangle. So, it is easy to see that $j=d 2^{q}$ for some d.

Case (ii): $1<v \leq i$.
By (1), v is adjacent to $k-i+v$. Since v is a pendent vertex, $a_{v-1, k-i+v}=1$. This gives a contradiction because $a_{v-1, k-i+v}=0$.

Case (iii): $v=i+1$.
Since $a_{i+1, k-2^{m}+1}=1, v$ is adjacent to the vertex $k-2^{m}+1$. If $k \neq n$, then $a_{i+1, k+1}=1$. This gives a contradiction because $i+1$ is a pendent vertex in G. So $k=n$. If $i>2^{m}$ or $n-j+1>2^{m}$, then it is easy to see that the degree of k is at least three. This gives a contradiction because the degree of k is two. So, $k=n$, $i \leq 2^{m}$, and $n-j+1 \leq 2^{m}$. This is illustrated in Figure 5 .

Figure 5.

Case (iv): $i+1<v \leq j$.
An analogous argument of Case (ii) leads us to a contradiction.
Case (v): $j<v<k$.
In this case, $v=k+2^{m}-d 2^{l}$ for some positive integer d. So, $j<k+2^{m}-2^{l}$.
Case (vi): $v>k$.
In this case, $v=k+2^{m}+d 2^{l}$ for some integer d, and so $k+2^{m} \leq n$. Hence $n-k \geq 2^{m}$
Conversely, if $n-k \geq 2^{m}, G$ has a pendent vertex $k+2^{m}$ (see Figure 3). Assume that $j=d 2^{q}$ for some d. Then G has a pendent vertex 1 (see Figure 4). Assume that $k=n, i \leq 2^{m}$ and $n-j+1 \leq 2^{m}$. Then G has a pendent vertex $i+1$ (see Figure 5). Assume that $j<k+2^{m}-2^{l}$, where $l=\lceil l g(j)\rceil$. Then by the Steinhaus property, G has a pendent vertex $k+2^{m}-2^{l}$. Hence the proof of lemma is completed.

Lemma 2.2. Let $G=G_{n}(k ; i, j) \in A_{1}$ with $j-i \neq 2^{m}$. Then G has a pendent vertex if and only if G satisfies the followings:

$$
k=n \text { and } j-i=c 2^{l_{1}}=d 2^{l_{2}}
$$

for some c and d, where $l_{1}=\lceil l g(i)\rceil$ and $l_{2}=\lceil l g(n-j)\rceil$.

Figure 6.

Proof. Let v be a pendent vertex in G. If $2 \leq v \leq i$ or $i+2 \leq v \leq j$, then an analogous argument to Lemma 2.1 leads us to a contradiction. Also, it is not difficult to see that if $v>j$, then the degree of v is at least two. So $v=1$ or $v=i+1$. Assume that v is the vertex 1. Then its adjacency matrix consists of a big Pascal's triangle. But in Pascal's triangle, it is impossible that $j-i \neq 2^{m}$. Assume that v is the vertex $i+1$. Since $a_{i+1, k-(j-i)+1}=1, v$ is adjacent to the vertex $k-(j-i)+1$. If $k \neq n$, then $a_{i+1, k+1}=1$. This gives a contradiction because $i+1$ is a pendent vertex in G. So $k=n$. Also, it is easy to see that $j-i=c 2^{l_{1}}=d 2^{l_{2}}$ for some c and d, where $l_{1}=\lceil l g(i)\rceil$ and $l_{2}=\lceil l g(n-j)\rceil$. This is illustrated in Figure 6.

Conversely, if G has the case $k=n$ and $j-i=c 2^{l_{1}}=d 2^{l_{2}}$, then $i+1$ is a pendent vertex in G. Hence the proof of lemma is completed.

By combining the above Lemmas, we prove the following theorem.
Lemma 2.3. Let $G=G_{n}(k ; i, j) \in A_{1}$. Then $\delta(G)=2$ if and only if G satisfies one of the followings:
(1) $j-i=2^{m}$.

In this case, $n-k<2^{m}$ and it satisfies the following conditions:
(a) $j \neq d 2^{q}$ for any d, where $q=\lceil l g(k-i)\rceil$.
(b) $k \neq n, i>2^{m}$ or $n-j+1>2^{m}$.
(c) $j \geq k+2^{m}-2^{l}$, where $l=\lceil l g(j)\rceil$.
(2) $j-i \neq 2^{m}$.
$k \neq n, j-i \neq c 2^{l_{1}}$ or $j-i \neq d 2^{l_{2}}$ for any c and d, where $l_{1}=\lceil\lg (i)\rceil$ and $l_{2}=\lceil l g(n-j)\rceil$.

Note that if $G \in A_{3}$ and $\delta(G)=2$, then $P(G) \in A_{1}$ and $\delta(P(G))=2$. So by Theorem 2.3, we get to the following theorem.

Lemma 2.4. Let $G \in A_{3}$. Then $\delta(G)=2$ if and only if $P(G)=G_{n}(k ; i, j)$ satisfies at least one of the following conditions:
Case 1. $j-i=2^{m}$.
In this case, $n-k<2^{m}$ and it satisfies the following conditions:
(a) $j \neq d 2^{q}$ for any d, where $q=\lceil l g(k-i)\rceil$.
(b) $k \neq n, i>2^{m}$ or $n-j+1>2^{m}$.
(c) $j \geq k+2^{m}-2^{l}$, where $l=\lceil\lg (j)\rceil$.

Case 2. $j-i \neq 2^{m}$.
$k \neq n$ or $j-i \neq c 2^{l_{1}}$ or $j-i \neq d 2^{l_{2}}$ for any c and d, where $l_{1}=\lceil l g(i)\rceil$ and $l_{2}=\lceil l g(n-j)\rceil$.

Lemma 2.5. Let $G \in A_{2}=G_{n}(k ; i, j)$. Then G has a pendent vertex if and only if G satisfies one of the followings:
(a) $k-i=1$ and $j-k=1$.
(b) $k-i=1$ and $j-k>1$.
$n-j+1=d 2^{l_{1}}$ and $j-k-1=s 2^{l_{2}}$ for some d and s, where $l_{1}=\lceil\lg (j-k)\rceil$ and $l_{2}=\lceil l g(i)\rceil$.
(c) $k-i>1$ and $j-k=1$.
$i=d 2^{l_{1}}$ and $k-i-1=s 2^{l_{2}}$ for some d and s, where $l_{1}=\lceil l g(k-i)\rceil$ and $l_{2}=\lceil l g(n-j+1)\rceil$.

Proof. Let v be a pendent vertex in G.
Suppose that $k-i>1$ and $j-k>1$. Then $a_{i-r, k-r}=a_{i-r, k+1}=1$ for $r=0, \cdots, i-1$ and $a_{k+r, j+r}=a_{k-1, j+r}=1$ for all $r=0, \cdots, n-j$. If $v \leq i$ or $v \geq j$, then v is not a pendent vertex. Now, since $a_{v, i}=a_{v, j}=1$ for $i<v<j, v$
is at least degree two. Thus in this case, any vertex of G is not a pendent vertex. This gives a contradiction. So G satisfies one of the following three cases.

Case (i): $k-i=1, j-k=1$.
In this case, it is easily seen to imply that G is the $1-n$ path.
Case (ii): $k-i=1, j-k>1$.
Let $l_{1}=\lceil l g(j-k)\rceil$ and $l_{2}=\lceil l g(i)\rceil$.
If $v \neq n$, then by Steinhaus property, v is not a pendent vertex. So, the vertex v is equal to n. In this case, G satisfies the condition $n-j+1=d 2^{l_{1}}$, and $j-k-1=s 2^{l_{2}}$ for some d and s. This is illustrated in Figure 7.

Case (iii) $k-i>1, j-k=1$.
We consider the partner of G. Then $P(G)$ has the same case to Case (ii). So we obtain the desired result.

Conversely, if $k-i=1, j-k=1$, the verties 1 and n are pendent verties. Assumer that $k-i=1, j-k>1$. If $n-j+1=d 2^{l_{1}}$ and $j-k-1=s 2^{l_{2}}$ for some d and s, then n is pendent vertex (see Figure 3). By considering the partner of G, we prove the case (c). In this case, 1 is pendent vertex in G. Hence the proof of lemma is completed.

From Lemma 2.5, we get to the following theorem.
Lemma 2.6. Let $G \in A_{2}=G_{n}(k ; i, j)$. Then $\delta(G)=2$ if and only if G satisfies one of the following cases:
(1) $k-i>1$ and $j-k>1$.
(2) $k-i=1$ and $j-k>1$.
$n-j+1 \neq d 2^{l_{1}}$, or $j-k-1 \neq s 2^{l_{2}}$ for any d and s, where $l_{1}=\lceil\lg (j-k)\rceil$ and $l_{2}=\lceil l g(i)\rceil$.
(3) $k-i>1$ and $j-k=1$.
$i \neq d 2^{l_{1}}$ or $k-i-1 \neq s 2^{l_{2}}$ for any d and s, where $l_{1}=\lceil l g(k-i)\rceil$ and $l_{2}=\lceil l g(n-j+1)\rceil$.

From previous facts, we see that the number of 3 -edge-connected Steinhaus graphs is

$$
2^{n-1}-(p(n)+b(n)+1)
$$

where $b(n)=\left|\bigcup_{i=1}^{3}\left\{G \in A_{i} \mid \delta(G)=2\right\}\right|$. So, in order to see the number 3-edgeconnected Steinhaus graphs, we need to count the number $b(n)$ of all Steinhaus graphs with $\delta(G)=2$.
$\begin{array}{llllll}0 & 0 & 0 & 1 & 0 & 1\end{array}$

0	0	1	1	1	1

0 $1 \begin{array}{llllll}1 & 0 & 0 & 0 & 1\end{array}$
010011
0101101
$\begin{array}{llllll}0 & 1 & 1 & 1 & 1 & 1\end{array}$
0
000001
$\begin{array}{llllll}0 & 0 & 0 & 0 & 1\end{array}$

Figure 7.

References

[1] Bollobas, B., Graph Theory, Springer-Verlag, New York, (1979).
[2] W. M. Dymacek, Complements of Steinhaus graphs, Discrete Math., 37(2-3)(1981), 167-180.
[3] W. M. Dymacek, Steinhaus graphs, Congr. Numer. XXIII(1979), 399-412.
[4] H. Harborth, Solution of Steinhaus's problem with plus and minus signs, J. Combinatorial Theory, 12(A)(1972), 253-259.
[5] D. J. Kim and D. K. Lim, 2-connected and 2-edge-connected Steinhaus graphs, Discrete Math., 256(1-2)(2002), 257-265.
[6] W. M. Dymacek, Connectivity in Steinhaus graphs, in preparation.

