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Abstract. This paper delineates some fundamental properties of the set of strongly

unique best coapproximation. Uniqueness of strongly unique best coapproximation is

studied. Some characterizations of strongly unique best coapproximation and strongly

unique best approximation are obtained. Some more results concerning strongly unique

best uniform coapproximation and strongly unique best uniform approximation are pre-

sented. Some relations between best uniform approximation and strongly unique best

uniform coapproximation are established.

1. Introduction

A new kind of approximation was first introduced in 1979 by Franchetti and
Furi ([2]) to characterize real Hilbert spaces among real reflexive Banach spaces.
This was christened ‘best coapproximation’ by Papini and Singer ([15]). Subse-
quently, Geetha S. Rao and coworkers have developed this theory to a considerable
extent ([3], [4], [5], [6], [7], [8], [9], [10], [11], [12]). This theory is largely concerned
with the questions of existence, uniqueness and characterizations of best coapprox-
imation. It also deals with the continuity properties of the cometric projection
and selections for the cometric projection, apart from related maps and strongly
unique best coapproximation. This paper mainly deals with some characteriza-
tions of strongly unique best coapproximation with respect to L∞-norm. Section
2 gives some fundamental concepts of best approximation and best coapproxima-
tion. Section 3 delineates some fundamental results related to strongly unique best
coapproximation. It is observed that a strongly unique best coapproximation is not
unique in general and it is proved that it is unique in an inner product space. Sec-
tion 4 establishes some necessary and sufficient conditions characterizing strongly
unique best coapproximation and strongly unique best approximation. Section 5
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provides some results concerning strongly unique best uniform coapproximation.
Under which conditions a function belongs to the closure of the set of functions
which have strongly unique best uniform coapproximation from a subset is investi-
gated. Section 6 discusses some relations between best uniform approximation and
strongly unique best uniform coapproximation.

2. Preliminaries

Definition 2.1. Let G be a nonempty subset of a real normed linear space X. An
element gf ∈ G is called a best coapproximation to f ∈ X from G if for every g ∈ G,

‖g − gf‖ ≤ ‖f − g‖.
The set of all best coapproximations to f ∈ X from G is denoted by RG(f).

The subset G is called an existence set if RG(f) contains at least one element, for
every f ∈ X. The subset G is called a uniqueness set if RG(f) contains at most one
element, for every f ∈ X. The subset G is called an existence and uniqueness set if
RG(f) contains exactly one element, for every f ∈ X.
Definition 2.2. Let G be a nonempty subset of a real normed linear space X. The
set-valued mapping RG : X → POW(G) which associates for every f ∈ X, the set
RG(f) of the best coapproximations to f from G is called the cometric projection
onto G, where POW(G) denotes the set of all subsets of G.

Definition 2.3. Let G be a nonempty subset of a real normed linear space X. An
element gf ∈ G is called a best approximation to f ∈ X from G if for every g ∈ G,
‖f − gf‖ ≤ ‖f − g‖ i.e., if ‖f − gf‖ = inf

g∈G
‖f − g‖ = d(f,G),

where d(f,G) := distance between the element f and the set G.
The set of all best approximations to f ∈ X from G is denoted by PG(f). The

subset G is called a proximinal or existence set if PG(f) contains at least one element
for every f ∈ X. G is called a semi Chebyshev or uniqueness set if PG(f) contains
at most one element for every f ∈ X. G is called a Chebyshev or existence and
uniqueness set if PG(f) contains exactly one element for every f ∈ X.

Let [a, b] be a closed and bounded interval on the real line. A space of continuous
real valued functions on [a, b] is defined by

C[a, b] = {f : [a, b]→R : f is continuous},
where R denotes the set of real numbers.

Definition 2.4. For all functions f ∈ C[a, b], the uniform norm or L∞-norm or
supremum norm is defined by ‖f‖∞ = sup

t∈[a,b]

|f(t)|.
Best coapproximation (respectively, best approximation) with respect to this

norm is called best uniform coapproximation (respectively, best uniform approxima-
tion).
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Definition 2.5. Let G be a nonempty subset of a real normed linear space X. The
set-valued mapping PG : X → POW(G) which associates for every f ∈ X, the set
PG(f) of the best approximations to f from G is called the metric projection onto
G.

Definition 2.6. Let G be a linear subspace of a real normed linear space X and let
f1, f2 ∈ X. Then f1 is orthogonal to f2 (denoted by f1 ⊥ f2) if ‖f1‖ ≤ ‖f1 +αf2‖ for
every α ∈ R. The element f ∈ X is said to be orthogonal to the subset G (denoted
by f ⊥ G) iff ⊥ g for every g ∈ G. Similarly, G ⊥ f if g ⊥ f for every g ∈ G.

Let G be a linear subspace of a real normed linear space X, f ∈ X and gf ∈ G.
It is clear from the definitions of best approximation, best coapproximation and
the above notion of orthogonality that gf ∈ RG(f) if and only if G ⊥ (f − gf ) and
gf ∈ PG(f) if and only if (f−gf ) ⊥ G. This notion of orthogonality is not symmetric
in an arbitrary normed linear space. But this orthogonality is symmetric in an inner
product space. Hence best approximation and best coapproximation coincide in an
inner product space. A detailed discussion of this can be found in [2], [15].

For sake of brevity, the terminology subspace is used instead of a linear subspace.
Unless otherwise stated all normed linear spaces considered in this paper are real
normed linear spaces.

3. Some fundamental results

Definition 3.1. Let G be a subset of a normed linear space X, f ∈ X \ G and
gf ∈ G. Then gf is called a strongly unique best approximation to f from G, if there
exists a constant kf > 0 such that for all g ∈ G,

(1) ‖f − gf‖ ≤ ‖f − g‖ − kf‖g − gf‖.

Similarly, gf is called a strongly unique best coapproximation to f from G, if
there exists a constant kf > 0 such that for all g ∈ G,

(2) ‖g − gf‖ ≤ ‖f − g‖ − kf‖f − gf‖.

It is clear that if some kf > 0 satisfies inequality (1) (respectively, (2)), then
every smaller value of kf will also satisfy inequality (1) (respectively, (2)). The
maximum of all such numbers kf > 0 is called the strong unicity constant of f and
is denoted by K(f).

Obviously, every strongly unique best approximation is a unique best approximation.
But strongly unique best coapproximation need not imply the uniqueness, which
requires further investigation. It is clear that gf is a strongly unique best coapprox-
imation to f from G with the corresponding strong unicity constant equal to 1 if
and only if gf is a strongly unique best approximation to f from G with the strong
unicity constant equal to 1. Thus the strongly unique best coapproximation implies
the uniqueness if the corresponding strong unicity constant is equal to 1.



522 Geetha S. Rao and R. Saravanan

It is clear that the strong unicity constant in the context of coapproximation
is bounded by 1, for if gf is a strongly unique best coapproximation to f from G,
then for all g ∈ G,

kf‖f − gf‖ ≤ ‖f − g‖ − ‖g − gf‖
≤ ‖f − gf‖.

Hence kf ≤ 1. This implies that K(f) ≤ 1.
It is not possible to say that ‖f−gf‖ is small whenever ‖f−g‖−‖g−gf‖ is small,

for g ∈ G. However, it is true if gf ∈ G is a strongly unique best coapproximation
to f from G, since then for all g ∈ G,

‖f − gf‖ ≤ 1
kf

(‖f − g‖ − ‖g − gf‖).

If f ∈ G, then all values of kf > 0 satisfy inequality (2) for f = gf . Hence f itself
is the strongly unique best coapproximation to f. Also the strong unicity constant
cannot be determined, since max(0,∞) does not exist. Hence in the problem of
strongly unique best coapproximation, it is assumed hereafter that f ∈ X \G.

In contrast to best coapproximation, the strongly unique best coapproximation
does not coincide with the strongly unique best approximation in inner product
spaces. In the case of strongly unique best approximation, the constant kf > 0
satisfying inequality (1) depends only on f. But in the case of strongly unique best
coapproximation the constant kf > 0 satisfying inequality (2) depends on both f
and gf .

In what follows, we suggest some counter examples for

• Strongly unique best coapproximation is not unique in general.

• Strongly unique best coapproximation is not equal to strongly unique best
approximation in an inner product space.

Example 3.2. Let X = R×R, G = R×{0}, x = (0, 1) or x = (0,−1). Then the
following statements are true:

(i) The point (0, 0) is the unique best approximation to x from G under l1-norm,
‖(a, b)‖1 = |a|+ |b|, a, b ∈ R and l2-norm, ‖(a, b)‖2 =

√
a2 + b2, a, b ∈ R.

(ii) The set {(b, 0) : −1 ≤ b ≤ 1} consists of best approximations to x from G
under l∞-norm, ‖(a, b)‖∞ = max{|a|, |b|}, a, b ∈ R.

(iii) The point (0, 0) is the strongly unique best approximation to x from G under
l1-norm but it is not so under l2-norm. In this case kf ≤ 1 and the strong
unicity constant is 1.

(iv) The set {(b, 0) : −1 ≤ b ≤ 1} consists of best coapproximations to x from G
under l1-norm.
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(v) The point (0, 0) is the unique best coapproximation to x from G under l2-
norm and l∞-norm.

(vi) The set {(b, 0) : −1 < b < 1} consists of strongly unique best coapproxima-
tions to x from G under l1-norm. Here kf = inf

a∈R
|a|+1−|a−b|
|b|+1 .

This shows that strongly unique best coapproximation is not unique.

(vii) The point (0, 0) is not a strongly unique best coapproximation to x from G
under l∞-norm.

(viii) The point (0, 0) is the unique strongly unique best coapproximation to x from
G under l2-norm. Here kf = inf

a∈R
√
a2 + 12 − a.

This with (iii) shows that a strongly unique best coapproximation is not equal
to a strongly unique best approximation in an inner product space.

The next result answers the question:
Where is the strongly unique best coapproximation unique?

Theorem 3.3. In an inner product space, every strongly unique best coapproxima-
tion is unique.

Proof. Let G be a subset of an inner product space X, f ∈ X \G. If g1 and g2 are
strongly unique best coapproximations to f from G, then it is clear that g1 and g2

are best coapproximations to f and hence g1 and g2 are best approximations to f,
since best coapproximation coincides with best approximation in an inner product
space. Since best approximation is unique in an inner product space, g1 = g2. �

Remark 3.4. Theorem 3.3 shows that the constant kf > 0 satisfying inequality
(2) depends only on f in an inner product space.

Let X be a normed linear space, G be a subset of X and f ∈ X \G. Let TG(f)
denotes the set of strongly unique best coapproximations to f from G. That is, for
some kf > 0,

TG(f) = {gf ∈ G : ‖g − gf‖ ≤ ‖f − g‖ − kf‖f − gf‖, for all g ∈ G}.

Theorem 3.5. Let G be a convex subset of a normed linear space X,
f ∈ X \ G. Then the strongly unique best coapproximation to f from G is either
unique or there are infinitely many. In fact, the set of strongly unique best coap-
proximations TG(f) forms a convex set.

Proof. If the strongly unique best coapproximation is unique, then it is clear that
TG(f) is convex. Otherwise, let g1 and g2 be distinct strongly unique best coap-
proximations to f from G. Then there exist k1, k2 > 0 such that for all g ∈ G,

‖g − g1‖ ≤ ‖f − g‖ − k1‖f − g1‖, ‖g − g2‖ ≤ ‖f − g‖ − k2‖f − g2‖.

To prove that TG(f) contains infinitely many elements, it is sufficient to prove that
TG(f) is convex. Let k = min{k1, k2}. Then for every g ∈ G, 0 ≤ α ≤ 1, it follows
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that

‖g − (αg1 + (1− α)g2)‖
= ‖α(g − g1) + (1− α)(g − g2)‖
≤ α‖g − g1‖+ (1− α)‖g − g2‖
≤ α‖f − g‖ − αk‖f − g1‖+ (1− α)‖f − g‖ − (1− α)k‖f − g2‖
= ‖f − g‖ − k(‖αf − αg1‖+ ‖(1− α)f − (1− α)g2‖)
≤ ‖f − g‖ − k‖αf − αg1 + (1− α)f − (1− α)g2‖
= ‖f − g‖ − k‖f − (αg1 + (1− α)g2)‖.

Thus TG(f) is convex. �

In contrast to RG(f), TG(f) is not closed, when G is closed. See Example 3.2.
(vi), which also shows that TG(f) is not open.

The next result establishes some more properties of TG(f).

Theorem 3.6. Let G be a subset of a normed linear space X, f ∈ X \ G. Then
TG(f) satisfies the following properties:

(i) If gf ∈ TG(f), then gf ∈ TG(αnf + (1− α)ngf ) for α ≥ 1 and n = 0, 1, · · · .
(ii) TG(f) is bounded.

If G is a subspace of X, then TG(f) satisfies the following properties:

(iii) [3] TG(f + g) = TG(f) + g, for all g ∈ G.
(iv) [3] TG(αf) = αTG(f), α ∈ R.

Proof. (i) gf ∈ TG(f) ⇒ ‖g − gf‖ ≤ ‖f − g‖ − kf‖f − gf‖, for all g ∈ G and for
some kf > 0.

Claim. gf ∈ TG(αf + (1− α)gf ), α ≥ 1.
That is, ‖g − gf‖ ≤ ‖αf + (1− α)gf − g‖ − kf‖αf − αgf‖.
Now

‖αf + (1− α)gf − g‖ − kf‖αf − αgf‖
= ‖α(f − g) + (1− α)(gf − g)‖ − kf‖αf − αgf‖
≥ α‖f − g‖ − (α− 1)‖g − gf‖ − kf‖αf − αgf‖
≥ α(‖g − gf‖+ kf‖f − gf‖)− (α− 1)‖g − gf‖ − kf‖αf − αgf‖
= ‖g − gf‖.

Hence the claim is true. By the repeated application of the claim the result follows.

(ii) To prove that TG(f) is bounded, it is sufficient to prove for gf , g̃f ∈ TG(f)
that ‖gf − g̃f‖ < c for some c > 0, since ‖gf − g̃f‖ < c implies that sup

gf ,g̃f∈TG(f)

‖gf −
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g̃f‖ is finite. Hence the diameter of TG(f) is finite, so that TG(f) is bounded. Let
gf ∈ TG(f). Then there exists a constant kf > 0 such that for all g ∈ G,

‖g − gf‖ ≤ ‖f − g‖ − kf‖f − gf‖.

It follows that

‖f − gf‖ ≤ ‖f − g‖+ ‖g − gf‖
≤ ‖f − g‖+ ‖f − g‖ − kf‖f − gf‖
= 2‖f − g‖ − kf‖f − gf‖.

Thus
‖f − gf‖ ≤ 2

1 + kf
‖f − g‖,

for all g ∈ G. Hence ‖f − gf‖ ≤ 2
1+kf

d, where d := inf
g∈G
‖f − g‖.

Claim. For gf , g̃f ∈ TG(f), ‖gf − g̃f‖ < c for some c > 0.
Now

‖gf − g̃f‖ ≤ ‖gf − f‖+ ‖f − g̃f‖
≤ 2

1 + kf
d+

2
1 + k′f

d

= c,

where k′f is the positive constant such that

‖g − g̃f‖ ≤ ‖f − g‖ − k′f‖f − g̃f‖,

for all g ∈ G, and c = 2
1+kf

d+ 2
1+k′f

d. �

4. Characterization of strongly unique best coapproximation

Let X be a normed linear space, G be a subspace of X, f ∈ X \G and gf ∈ G.
Let [G, f ] be the subspace spanned by G and f. That is,

[G, f ] = {g + αf : g ∈ G,α ∈ R}

and [G, f ]∗ be the space of all continuous linear functionals defined on [G, f ].
For 0 < kf ≤ 1, define L(gf , kf ) by

L(gf , kf ) = {L ∈ [G, f ]∗ : L(f − gf ) = kf‖f − gf‖ and ‖L‖ = 1}.

The following proposition is required to obtain a characterization of a strongly
unique best coapproximation.
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Proposition 4.1. Let G be a subspace of a normed linear space X,
f ∈ X \ G. If a best coapproximation to f from G is strongly unique, then so
is the best coapproximation to every element of [G, f ] from G.

Proof. Let gf be the strongly unique best coapproximation to f from G. Then there
exists a constant kf > 0 such that ‖g − gf‖ ≤ ‖f − g‖ − kf‖f − gf‖.
Let g0 ∈ G, then g0 +αf ∈ [G, f ]. It is clear that g1 := αgf + g0 is a best coapprox-
imation to αf + g0 from G. Hence to prove the result it is sufficient to prove that
g1 is a strongly unique best coapproximation to αf + g0 from G. For all g ∈ G, it
follows that

‖g − g1‖ = ‖g − g0 − αgf‖

= |α|
∥∥∥∥
g − g0

α
− gf

∥∥∥∥

≤ |α|
{∥∥∥∥f −

g − g0

α

∥∥∥∥− kf‖f − gf‖
}

= ‖αf + g0 − g‖ − kf‖αf − αgf‖
= ‖αf + g0 − g‖ − kf‖αf + g0 − g1‖.

Thus g1 is a strongly unique best coapproximation to αf + g0 from G. �

Remark 4.2. Let f ∈ X \ G be an arbitrary element. Let f̃ = f−gf
‖f−gf‖ ,

gf ∈ G. Hence f = ‖f − gf‖f̃ + gf ∈ [G, f̃ ] and ‖f̃‖ = 1. If 0 is a strongly
unique best coapproximation to f̃ from G, then it is clear that ‖f − gf‖ 0 + gf is
a best coapproximation to ‖f − gf‖f̃ + gf = f and hence by Proposition 4.1 gf is
a strongly unique best coapproximation to f from G. Hence by Proposition 4.1, in
order to prove gf ∈ G is a strongly unique best coapproximation to an arbitrary
element f ∈ X \G, it is enough to prove that 0 is a strongly unique best coapprox-
imation to f̃ ∈ X \G, where ‖f̃‖ = 1. A similar fact can be proved in the context
of approximation.

The following theorem is a characterization of a strongly unique best coapprox-
imation.

Theorem 4.3. Let G be a subspace of a normed linear space X, f ∈ X \ G, and
gf ∈ G. Then the following statements are equivalent:

(i) There exists a real number kf > 0 such that for every g ∈ G,

sup
L∈L(gf ,kf )

L(g) = ‖g‖.

(ii) The element gf is a strongly unique best coapproximation to f from G.

Proof. By Remark 4.2, assume without loss of generality that gf = 0 and ‖f‖ = 1.
Hence it is sufficient to prove that there exists a constant kf > 0 such that for every
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g ∈ G, sup
L∈L(0,kf )

L(g) = ‖g‖ if and only if ‖g‖ ≤ ‖f − g‖ − kf .

Assume first that there exists kf > 0 such that for all g ∈ G, sup
L∈L(0,kf )

L(g) = ‖g‖.

Then for every g ∈ G, it follows that

‖f − g‖ = sup
L∈[G,f ]∗; ‖L‖=1

|L(f − g)|

≥ sup
L∈L(0,kf )

|L(f − g)|

≥ sup
L∈L(0,kf )

L(f − g)

= sup
L∈L(0,kf )

(L(f) + L(−g)) = sup
L∈L(0,kf )

(kf‖f‖+ L(−g))

= kf + sup
L∈L(0,kf )

L(−g)

= kf + ‖g‖.

Thus ‖g‖ ≤ ‖f − g‖ − kf for every g ∈ G.
Conversely, assume that for every g ∈ G,

(3) ‖g‖ ≤ ‖f − g‖ − kf .

Let g be an arbitrary fixed element of G. Define L′ : [g, f ]→R by

L′(αg + βf) = α‖g‖+ βkf ,

where α, β ∈ R. It can be verified easily that L′ is linear and continuous. Therefore,
L′ ∈ [g, f ]∗.

Claim. ‖L′‖ = 1

If β = 0, then |L′(αg + βf)| = |L′(αg)| = |α ‖g‖ | = ‖αg‖.
If β 6= 0, then

|L′(αg + βf)| = |α ‖g‖+ βkf |
≤ |α| ‖g‖+ |β|kf
= |β|

( |α|‖g‖
|β| + kf

)

= |β|
(∥∥∥∥
−α
β
g

∥∥∥∥+ kf

)

≤ |β|
∥∥∥∥f +

α

β
g

∥∥∥∥ by (3)

= ‖βf + αg‖.
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Hence ‖L′‖ = sup{|L′(αg + βf)| : ‖αg + βf‖ ≤ 1} ≤ 1. Since L′(αg) = 1 for
α = 1

‖g‖ , it follows that ‖L′‖ = 1.
By Hahn-Banach theorem, the continuous linear functional L′ can be extended

continuously and linearly to [G, f ] without increasing its norm. Hence assume
without loss of generality that L′ ∈ [G, f ]∗ and that L′ ∈ L(0, kf ). Since L′(g) = ‖g‖,
it follows that sup

L∈L(0,kf )

L(g) ≥ ‖g‖.
Since ‖L‖ = 1 for every L ∈ L(0, kf ), it follows that

L(g) ≤ |L(g)| ≤ ‖L‖ ‖g‖ = ‖g‖.

Hence sup
L∈L(0,kf )

L(g) ≤ ‖g‖. Therefore, sup
L∈L(0,kf )

L(g) = ‖g‖. �

Let G be a subspace of a normed linear space X, f ∈ X \G and gf ∈ G. The
following notation is used in the next result. Let kf > 0 be such that

‖g − gf‖ ≤ ‖f − g‖ − kf‖f − gf‖,

for every g ∈ G. Define a set Kgf by

Kgf = {z ∈ [G, f ] : L(z) ≤ kf‖f − gf‖, for all L ∈ L(gf , kf )}.

Let Lgf ∈ [G, f ]∗ be defined by Lgf (g + αf) = αkf‖f − gf‖, α ∈ R, for every
g ∈ G.
Theorem 4.4. If gf is a strongly unique best coapproximation to f from G, then

{z ∈ [G, f ] : Lgf (z) = kf‖f − gf‖} ∩Kgf

contains exactly one element x of the form x = f − gf , where kf > 0 is such that
‖g − gf‖ ≤ ‖f − g‖ − kf‖f − gf‖, for all g ∈ G.
Proof. If x = f−gf , then it is clear that x ∈ {z ∈ [G, f ] : Lgf (z) = kf‖f−gf‖}∩Kgf .
Assume that x ∈ {z ∈ [G, f ] : Lgf (z) = kf‖f − gf‖} ∩ Kgf . Then it follows that
Lgf (x) = kf‖f − gf‖. Hence by the definition of Lgf , x = g + f for some g ∈ G.
Since x ∈ Kgf , it follows for every L ∈ L(gf , kf ) that

L(x) ≤ kf‖f − gf‖
⇒ L(g + f) ≤ kf‖f − gf‖
⇒ L(g + gf − gf + f) ≤ kf‖f − gf‖
⇒ L(g + gf ) + L(f − gf ) ≤ kf‖f − gf‖
⇒ L(g + gf ) + kf‖f − gf‖ ≤ kf‖f − gf‖
⇒ L(g + gf ) ≤ 0
⇒ sup

L∈L(g,kf )

L(g + gf ) ≤ 0.
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Since gf is a strongly unique best coapproximation, by Theorem 4.3

sup
L∈L(gf ,kf )

L(g + gf ) = ‖g + gf‖ ≤ 0.

This implies that g = −gf . Hence x = f − gf . �
For each g ∈ G, define a set L(g, f, gf ) of continuous linear functionals by

L(g, f, gf ) = {L ∈ [G, f ]∗ : L(g − gf ) = ‖g − gf‖ and ‖L‖ = 1}.

It is clear that L ∈ L(g, f, gf ) implies that −L does not belong to L(g, f, gf ). Now
a characterization of strongly unique best coapproximation is established.

Theorem 4.5. Let G be a subspace of a normed linear space X, f ∈ X \ G and
gf ∈ G. Then the following statements are equivalent:

(i) There exists a constant kf > 0 such that for each g ∈ G,

sup
L∈L(g,f,gf )

L(f) ≥ kf‖f‖.

(ii) The element gf is a strongly unique best coapproximation to f from G.

Proof. By Remark 4.2, assume without loss of generality that gf = 0 and ‖f‖ = 1.
Hence it is sufficient to prove that there exists a constant kf > 0 such that for every
g ∈ G, sup

L∈L(g,f,0)

L(f) ≥ kf if and only if ‖g‖ ≤ ‖f − g‖ − kf . Assume first that

there exists kf > 0 such that for every g ∈ G,

sup
L∈L(g,f,0)

L(f) ≥ kf .

Then for every g ∈ G, it follows that

‖f − g‖ = sup
L∈[G,f ]∗; ‖L‖=1

|L(f − g)|

≥ sup
L∈L(−g,f,0)

|L(f − g)|

≥ sup
L∈L(−g,f,0)

L(f − g)

= sup
L∈L(−g,f,0)

(L(f) + L(−g))

= sup
L∈L(−g,f,0)

(L(f) + ‖g‖)

= sup
L∈L(−g,f,0)

(L(f)) + ‖g‖

≥ kf + ‖g‖.
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Thus ‖g‖ ≤ ‖f − g‖ − kf , for every g ∈ G.
Conversely, assume that for every g ∈ G, ‖g‖ ≤ ‖f − g‖ − kf .

Let g be an arbitrary but fixed element of G. Define L′ : [g, f ]→R by L′(αg+βf) =
α‖g‖+ βkf , where α, β ∈ R. By proceeding as in the proof of Theorem 4.3, it can
be shown that L′ ∈ L(g, f, 0). Since L′(f) = kf , it follows that sup

L∈L(g,f,0)

L(f) ≥ kf .
�

By applying the techniques used in [1] and Theorem 4.3, a necessary and suf-
ficient condition characterizing a strongly unique best approximation is obtained,
for which the following notation is required.

For kf > 0 and for each g ∈ G, define a set L(g, f, gf , kf ) of continuous linear
functionals by

L(g, f, gf , kf ) = {L ∈ [G, f ]∗ : L(g − gf ) = kf‖g − gf‖ and ‖L‖ = 1}.

Theorem 4.6. Let G be a subspace of a normed linear space X, f ∈ X \ G and
gf ∈ G. Then the following statements are equivalent:

(i) There exists a constant kf > 0 such that for each g ∈ G,

sup
L∈L(g,f,gf ,kf )

L(f) = ‖f‖.

(ii) The element gf is a strongly unique best approximation to f from G.

5. Some results concerning strongly unique best uniform coapproxima-
tion

Strongly unique best coapproximation (respectively, strongly unique best ap-
proximation) with respect to the uniform norm is called strongly unique best uni-
form coapproximation (respectively, strongly unique best uniform approximation).

Definition 5.1. The set E(f) of extreme points of a function f ∈ C[a, b] is de-
fined by E(f) = {t ∈ [a, b] : |f(t)| = ‖f‖∞}. For r ∈ R and f ∈ C[a, b], define
rE(f) = {t ∈ [a, b] : |f(t)| = r‖f‖∞}.

Now a condition to establish strongly unique best uniform coapproximation is
obtained in the following result:

Theorem 5.2. Let G be a subset of C[a, b], f ∈ C[a, b] \ G and gf ∈ G. If there
exists a constant kf > 0 such that for every g ∈ G,

(4) min
t∈kfE(f−gf )

(f(t)− gf (t))(g(t)− gf (t)) ≤ −kf‖f − gf‖∞‖g − gf‖∞.
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Then the function gf is a strongly unique best uniform coapproximation to f from
G.

Proof. It is clear that for every g ∈ G, there exists a point t ∈ kfE(f − gf ) such
that

(f(t)− gf (t))(g(t)− gf (t)) ≤ −kf‖f − gf‖∞‖g − gf‖∞.
This implies that for every g ∈ G,

|f(t)− gf (t)| |g(t)− gf (t)| ≥ kf‖f − gf‖∞‖g − gf‖∞.

Then it follows that for every g ∈ G,

‖f − g‖∞ ≥ |f(t)− g(t)|
= |(f(t)− gf (t))− (g(t)− gf (t))|
= |f(t)− gf (t)|+ |g(t)− gf (t)|
≥ |f(t)− gf (t)|+ kf‖f − gf‖∞‖g − gf‖∞

|f(t)− gf (t)|
= kf‖f − gf‖∞ +

kf‖f − gf‖∞‖g − gf‖∞
kf‖f − gf‖∞ .

Thus for every g ∈ G, ‖g − gf‖∞ ≤ ‖f − g‖∞ − kf‖f − gf‖∞. �

Remark 5.3. If G is a subspace of C[a, b], then inequality (4) in Theorem 5.2 can
be replaced by the inequality

min
t∈kfE(f−gf )

(f(t)− gf (t))(g(t)) ≤ −kf‖f − gf‖∞‖g‖∞.

Let A be a subset of C[a, b] such that A = {f ∈ C[a, b] : f(αt) = αf(t), α > 0}.
Let G be a subset of C[a, b] and let

SU(G) = {f ∈ C[a, b] : f has a strongly unique best uniform coapproximation
from G}.

SU(G, 0) = {f ∈ C[a, b] : f has 0 as its strongly unique best uniform coapprox-
imation from G}.

Then the following notion of open base for a set is required to characterize those
functions which belong to SU(G, 0).

Definition 5.4. An open base for a set is a class of neighborhoods of the set such
that each neighborhood of the set contains a neighborhood in this class.

Lemma 5.5. Let [a, b] be a closed and bounded interval in R such that αa ∈ [a, b]
for 0 < α ≤ 1. Let G be a subset of A and f ∈ A \ G. If there exists a constant
kf > 0 such that for every function g ∈ G and every set B containing E(f),

inf
t∈B

f(kf t)g(kf t) ≤ −kf‖f‖∞‖g‖∞,
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then f ∈ SU(G, 0).

Proof. Let {Bn} be an open base for the set E(f) such that Bn ⊂ Bn−1 for all n.
For sufficiently large n, define

fn(t) =
{
f(t), t ∈ [a, b] \Bn−1

‖f‖∞ sgnf(t), t ∈ Bn.
Then by Tietze extension theorem, there exists a continuous extension of fn to
[a, b] such that ‖fn‖∞ = ‖f‖∞. It is clear that {fn} converges to f. Therefore, it is
sufficient to prove that fn has 0 as its strongly unique best uniform coapproximation
from G. Let n be chosen arbitrarily large and g ∈ G. Since Bn is a set containing
E(f) and Bn ⊂ E(fn), it follows that min

t∈E(fn)
f(kf t)g(kf t) ≤ −kf‖f‖∞‖g‖∞.

Since fn → f, it follows that min
t∈E(fn)

fn(kf t)g(kf t) ≤ −kf‖fn‖∞‖g‖∞.
So there exists a point t ∈ E(fn) such that fn(kf t)g(kf t) ≤ −kf‖fn‖∞‖g‖∞.
This implies that |fn(kf t)| |g(kf t)| ≥ kf‖fn‖∞‖g‖∞.

Therefore, it follows that

‖fn − g‖∞ ≥ |fn(kf t)− g(kf t)|
= kf |fn(t)|+ |g(kf t)|
≥ kf‖fn‖∞ +

kf‖fn‖∞‖g‖∞
|fn(kf t)|

= kf‖fn‖∞ +
kf‖fn‖∞‖g‖∞
kf‖fn‖∞ .

Thus for every g ∈ G, ‖g‖∞ ≤ ‖fn − g‖∞ − kf‖fn‖∞.
Hence fn has 0 as its strongly unique best uniform coapproximation from G. �

Theorem 5.6. Let [a, b] be a closed and bounded interval in R such that αa ∈ [a, b]
for 0 < α ≤ 1. Let G be a subspace of A, f ∈ A \ G and gf ∈ G. If there exists
a constant kf > 0 such that for every function g ∈ G and every set B containing
E(f − gf ), inf

t∈B
(f(kf t)− gf (kf t))g(kf t) ≤ −kf‖f − gf‖∞‖g‖∞,

then f ∈ SU(G).

Proof. By Lemma 5.5, f − gf ∈ SU(G, 0). Therefore, let hn ∈ SU(G, 0) be a
sequence such that hn converges to f − gf . It is clear that hn + gf is a sequence
converging to f. It is also clear that hn + gf has gf as its strongly unique best
coapproximation from G. Hence f ∈ SU(G). �

Theorem 5.7. Let G be a subset of a normed linear space X. If G is an existence
and uniqueness set with respect to best coapproximation with a continuous cometric
projection and SU(G) 6= ∅, then SU(G) is an Fσ-set.

Proof. For each f ∈ SU(G), let K(f) be the strong unicity constant of f. That is,
K(f) is the maximum of the numbers kf > 0 such that for each g ∈ G,

‖g − gf‖ ≤ ‖f − g‖ − kf‖f − gf‖,
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where gf = RG(f). Let Fm = {f ∈ SU(G) : K(f) ≥ 1
m}. It is clear that SU(G) =⋃

m

Fm. Therefore, it is sufficient to prove that Fm is closed for each m. Let {fn} be

a sequence in Fm such that fn → f. Hence it is sufficient to prove that f ∈ Fm. Let
RG(fn) = gfn . Then it follows from fn ∈ Fm that for each g ∈ G,

(5) ‖g − gfn‖ ≤ ‖fn − g‖ −
1
m
‖fn − gfn‖.

Since the cometric projection RG is continuous, RG(fn)→ RG(f). By taking limits
in equation (5), it follows that ‖g − gf‖ ≤ ‖f − g‖ − 1

m‖f − gf‖, which shows that
f ∈ Fm. �

6. Some relations between best uniform approximation and strongly
unique best uniform coapproximation

The following result answers the question:
When does a best uniform approximation imply a strongly unique best uniform
coapproximation?

Theorem 6.1. Let G be a subset of C[a, b], f ∈ C[a, b] \ G and gf ∈ G be a best
uniform approximation to f from G. If there exists a constant kf > 0 such that for
every function g ∈ G, min

t∈E(g−gf )
(f(t)−g(t))(gf (t)−g(t)) ≤ −kf‖f−gf‖∞‖g−gf‖∞,

then the function gf is a strongly unique best uniform coapproximation to f from
G.

Proof. For every function g ∈ G, there exists a point t ∈ E(g − gf ) such that

(f(t)− g(t))(gf (t)− g(t)) ≤ −kf‖f − gf‖∞‖g − gf‖∞.
This implies that |f(t)− g(t)| |gf (t)− g(t)| ≥ kf‖f − gf‖∞‖g − gf‖∞.
Therefore, it follows that for every g ∈ G,

‖f − g‖∞ ≥ ‖f − gf‖∞
≥ |f(t)− gf (t)|
= |(f(t)− g(t))− (gf (t)− g(t))|
= |f(t)− g(t)|+ |gf (t)− g(t)|
≥ kf‖f − gf‖∞‖g − gf‖∞

|gf (t)− g(t)| + |gf (t)− g(t)|
= kf‖f − gf‖∞ + ‖g − gf‖∞.

Thus ‖g − gf‖∞ ≤ ‖f − g‖∞ − kf‖f − gf‖∞. �

Theorem 6.2. Let G be a subset of C[a, b], f ∈ C[a, b] \ G and gf ∈ G be a
best uniform approximation to f from G. If for every function g ∈ G,

min
t∈E(g−gf )

(f(t)− g(t))(gf (t)− g(t)) ≤ −‖f − gf‖∞‖g − gf‖∞,
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then the function gf is a strongly unique best uniform approximation and strongly
unique best uniform coapproximation to f from G.

Proof. The proof is the same as that of Theorem 6.1. �

The following result shows that a best uniform coapproximation is a strongly
unique best uniform approximation when a specific inequality is satisfied.

Theorem 6.3. Let G be a subset of C[a, b], f ∈ C[a, b] \ G and gf ∈ G be a best
uniform coapproximation to f from G. If there exists a constant kf > 0 such that
for every function g ∈ G \ {gf},

min
t∈E(f−gf )

(f(t)− g(t))(f(t)− gf (t)) ≤ −kf‖f − gf‖∞‖g − gf‖∞,

then the function gf is a strongly unique best uniform approximation to f from G.

Proof. There exists a point t ∈ E(f − gf ) such that for every g ∈ G \ {gf},

(f(t)− g(t))(f(t)− gf (t)) ≤ −kf‖f − gf‖∞‖g − gf‖∞.

This implies that for every g ∈ G \ {gf},

|f(t)− g(t)| |f(t)− gf (t)| ≥ kf‖f − gf‖∞‖g − gf‖∞.

Therefore, it follows that for every g ∈ G \ {gf},

‖f − g‖∞ ≥ ‖g − gf‖∞
≥ |g(t)− gf (t)|
= |(g(t)− f(t))− (gf (t)− f(t))|
= |g(t)− f(t)|+ |gf (t)− f(t)|
≥ kf

‖f − gf‖∞‖g − gf‖∞
|f(t)− gf (t)| + |gf (t)− f(t)|

= kf‖g − gf‖∞ + ‖f − gf‖∞.

Thus ‖f − gf‖∞ ≤ ‖f − g‖∞ − kf‖g − gf‖∞. �

Remark 6.4. A result similar to Theorem 6.2 can be obtained by taking kf = 1
in Theorem 6.3.

The next result provides a condition to obtain a strongly unique best uniform
approximation.

Theorem 6.5. Let G be a subset of C[a, b], f ∈ C[a, b] \ G and gf ∈ G. If there
exists a constant kf > 0 such that for every function g ∈ G,

(6) min
t∈kfE(g−gf )

(f(t)− gf (t))(g(t)− gf (t)) ≤ −kf‖f − gf‖∞‖g − gf‖∞,
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then the function gf is a strongly unique best uniform approximation to f from G.

Proof. There exists a point t ∈ kfE(g − gf ) such that for every g ∈ G,

(f(t)− gf (t))(g(t)− gf (t)) ≤ −kf‖f − gf‖∞‖g − gf‖∞.

This implies that for every g ∈ G,

|f(t)− gf (t)| |g(t)− gf (t)| ≥ kf‖f − gf‖∞‖g − gf‖∞.

Then it follows that for every g ∈ G,

‖f − g‖∞ ≥ |f(t)− g(t)|
= |(f(t)− gf (t))− (g(t)− gf (t))|
= |f(t)− gf (t)|+ |g(t)− gf (t)|
≥ kf

‖f − gf‖∞‖g − gf‖∞
|g(t)− gf (t)| + |g(t)− gf (t)|

= ‖f − gf‖∞ + kf‖g − gf‖∞.

Thus ‖f − gf‖∞ ≤ ‖f − g‖∞ − kf‖g − gf‖∞. �

Remark 6.6. If G is a subspace of C[a, b], then Theorem 6.5 remains true if
inequality (6) is replaced by the inequality

min
t∈kfE(g)

(f(t)− gf (t))(g(t)) ≤ −kf‖f − gf‖∞‖g‖∞.

The following Kolmogorov type criteria characterizing best uniform approxima-
tion, best uniform coapproximation, strongly unique best uniform approximation
and strongly unique best uniform coapproximation are required in the sequel.

Theorem 6.7 ([14]). Let G be a subset of C[a, b] such that αg ∈ G for all g ∈ G
and α ∈ [0,∞). Let f ∈ C[a, b] \G and gf ∈ G. Then the following statements are
equivalent:

(i) The function gf is a best uniform approximation to f from G.

(ii) For every function g ∈ G, min
t∈E(f−gf )

(f(t)− gf (t)) (g(t)− gf (t)) ≤ 0.

Theorem 6.8 ([13]). Let G be a subset of C[a, b] such that αg ∈ G for all g ∈ G
and α ∈ [0,∞). Let f ∈ C[a, b] \G and gf ∈ G. Then the following statements are
equivalent:

(i) The function gf is a best uniform coapproximation to f from G.

(ii) For every function g ∈ G, min
t∈E(g−gf )

(f(t)− gf (t)) (g(t)− gf (t)) ≤ 0.
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Theorem 6.9 ([16]). Let G be a subset of C[a, b] such that αg ∈ G for all g ∈ G
and α ∈ [0,∞). Let f ∈ C[a, b] \G and gf ∈ G. Then the following statements are
equivalent:

(i) The function gf is a strongly unique best uniform approximation to f from
G.

(ii) There exists a constant kf > 0 such that for every function g ∈ G,

min
t∈E(f−gf )

(f(t)− gf (t))(g(t)− gf (t)) ≤ −kf‖f − gf‖∞‖g − gf‖∞.

Theorem 6.10 ([13]). Let G be a subset of C[a, b] such that αg ∈ G for all g ∈ G
and α ∈ [0,∞), f ∈ C[a, b] \ G and gf ∈ G. Then the following statements are
equivalent:

(i) The function gf is a strongly unique best uniform coapproximation to f from
G.

(ii) There exists a constant kf > 0 such that for every function g ∈ G,
min

t∈E(g−gf )
(f(t)− gf (t)) (g(t)− gf (t)) ≤ −kf‖f − gf‖∞ ‖g − gf‖∞.

Proposition 6.11. Let G be a subset of C[a, b], f ∈ C[a, b] \ G and gf ∈ G.
Consider the following statements:

(i) For every function g ∈ G,

min
t∈E(f−gf )

(f(t)− gf (t))(g(t)− gf (t)) ≤ −‖f − gf‖∞‖g − gf‖∞.

(ii) For every function g ∈ G,

min
t∈E(g−gf )

(f(t)− gf (t))(g(t)− gf (t)) ≤ −‖f − gf‖∞‖g − gf‖∞.

(iii) The function gf is a strongly unique best uniform approximation and a
strongly unique best uniform coapproximation to f from G.

Then (i) ⇒ (iii) and (ii) ⇒ (iii).

Proof. The proof follows from Theorem 6.9 and Theorem 6.10. �

Remark 6.12. Proposition 6.11 remains true if g − gf is replaced by g when G is
considered as a subspace.

Recall that for kf > 0, A = {f ∈ C[a, b] : f(kf t) = kff(t)}.
Then the next result determines a condition when the same element can be a
strongly unique best uniform coapproximation and a best uniform approximation.
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Theorem 6.13. Let G be a subset of A, f ∈ A \ G and gf ∈ G. If there exists a
constant kf > 0 such that for every function g ∈ G,
(7) min

t∈E(f−gf )
(f(kf t)− gf (kf t))(g(kf t)− gf (kf t)) ≤ −kf‖f − gf‖∞‖g − gf‖∞,

then the function gf is a strongly unique best uniform coapproximation and a best
uniform approximation to f from G.

Proof. By proceeding as in the proof of Theorem 5.2, it can be shown that gf is a
strongly unique best uniform coapproximation to f from G. Inequality (7) implies
that (kf )2 min

t∈E(f−gf )
(f(t)− gf (t))(g(t)− gf (t)) < 0.

Therefore, min
t∈E(f−gf )

(f(t)− gf (t))(g(t)− gf (t)) < 0.

Hence by Theorem 6.7, gf is a best uniform approximation to f from G.
By applying similar arguments used in Theorem 6.13 and using Theorem 6.5

and Theorem 6.8, the following result can be proved. �

Proposition 6.14. Let G be a subset of A, f ∈ A \G and gf ∈ G. If there exists
a constant kf > 0 such that for every function g ∈ G,

min
t∈E(g−gf )

(f(kf t)− gf (kf t))(g(kf t)− gf (kf t)) ≤ −kf‖f − gf‖∞‖g − gf‖∞,

then the function gf is a strongly unique best uniform approximation and a best
uniform coapproximation to f from G.

The next result answers the question:
Under what circumstances can the same element be both a strongly unique best
uniform approximation and a strongly unique best uniform coapproximation?

Proposition 6.15. Let G be a subset of C[a, b], f ∈ C[a, b] \G and gf ∈ G. Then
each of the following statements implies that the function gf is a strongly unique
best uniform approximation and strongly unique best uniform coapproximation to f
from G.

(i) If there exists a constant kf > 0 such that for every function g ∈ G,
min

t∈E(f−gf )∩E(g−gf )
(f(t)− gf (t))(g(t)− gf (t)) ≤ −kf‖f − gf‖∞‖g − gf‖∞.

(ii) If there exists a constant kf > 0 such that for every function g ∈ G,
min

t∈kfE(f−gf )∩kfE(g−gf )
(f(t)− gf (t))(g(t)− gf (t)) ≤ −kf‖f − gf‖∞‖g− gf‖∞.

Proof. This is an easy consequence of Theorems 6.9, 6.10, 5.2, and 6.5. �

Remark 6.16. If G is considered as a subspace of C[a, b] or A accordingly, then
Theorem 6.13 and Propositions 6.11, 6.14, 6.15 remain true when g− gf is replaced
by g.
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