On $\left(H, \mu_{n}\right)$ Summability of Fourier Series

Satish Chandra
Department of Mathematics, S. M. Post-Graduate College, Chandausi-202412, India
e-mail: sharma_vikram@hotmail.com

Abstract. In this paper, we have proved a theorem on Hausdorff summability of Fourier series which generalizes various known results. We prove that if

$$
\int_{0}^{t}|\phi(u)| d u=o(t) \text { as } t \rightarrow 0 \text { and } \lim _{n \rightarrow \infty} \int_{\pi / n}^{\eta} \frac{|\phi(t)-\phi(t+\pi / n)|}{t} d t=o(n)
$$

where $0<\eta<1$, then the Fourier series is $\left(H, \mu_{n}\right)$ summable to s at $t=x$ where the sequence μ_{n} is given by

$$
\mu_{n}=\int_{0}^{1} x^{n} \chi(x) d x \quad n=0,1,2 \text { and } K_{n}(t)=\sum_{\nu=0}^{n}\binom{n}{\nu}\left(\Delta^{n-\nu} \mu_{\nu}\right) \frac{\sin \nu t}{t} .
$$

1. Definitions and notations

Let $\sum_{n=0}^{\infty} a_{n}$ be a given infinite series with the sequence of partial sums $\left\{s_{n}\right\}$, the sequence-to-sequence Hausdorff transformation of the sequence $\left\{s_{n}\right\}$ is given by

$$
\begin{equation*}
t_{n}=\sum_{\nu=0}^{n}\binom{n}{\nu}\left(\Delta^{n-\nu} \mu_{\nu}\right) s_{\nu} \tag{1.1}
\end{equation*}
$$

defines the sequence $\left\{t_{n}\right\}$ of Hausdorff means of the sequence $\left\{s_{n}\right\}$.
The $\left\{\mu_{n}\right\}$ form a given sequence of real or complex numbers and $\left(\Delta^{p} \mu_{n}\right)$ denote their difference of order p, that is, $\Delta^{0} \mu_{n}=\mu_{n}$ and

$$
\begin{equation*}
\Delta^{p} \mu_{n}=\Delta^{p-1} \mu_{n}-\Delta^{p-1} \mu_{n+1}=\Delta\left(\Delta^{p-1} \mu_{n}\right), \quad(p \geq 1) . \tag{1.2}
\end{equation*}
$$

The series $\sum_{n=0}^{\infty} a_{n}$ is said to be summable $\left(H, \mu_{n}\right)$ to the sum ' s ' if $\lim _{n \rightarrow \infty} t_{n}$ exists and is equal to s, Hausdorff ([5]) discussed for the first time this method of summability systematically.

Received July 3, 2002, and, in revised form, January 30, 2003.
2000 Mathematics Subject Classification: 40C05, 40D25, 40E05, 40F05, and 40G05.
Key words and phrases: Hausdorff summability, Fourier series, Hausdorff transformation.

When $\mu_{n}=q^{n}(0<q<1)$ (1.1) reduces to

$$
\begin{equation*}
t_{n}=\sum_{\nu=0}^{n}\binom{n}{\nu} q^{\nu}(1-q)^{n-\nu} s_{\nu} \tag{1.3}
\end{equation*}
$$

which is well known sequence-to-sequence Euler transformation. This method is regular for $0<q \leq 1$. Cesàro and Hölder methods are also particular cases of Hausdorff method.

In order that the method $\left(H, \mu_{n}\right)$ to be conservative, it is necessary and sufficient that there should be a function $\chi(x)$, of bounded variation in $[0,1]$ such that

$$
\begin{equation*}
\mu_{n}=\int_{0}^{1} x^{n} d \chi(x), \quad n=0,1,2 \tag{1.4}
\end{equation*}
$$

We may suppose without loss of generality that $\chi(0)=0$.
If further $\chi(x)$ satisfies the conditions that $\chi(+0)=0$ and $\chi(1)=1$, then μ_{n} is a regular moment constant and $\left(H, \mu_{n}\right)$ is a regular Hausdorff transformation.

The function $\chi(x)$ may have an enumerable set of discontinuities and the value of the integral (1.4) is not affected by any change in the value of $\chi(x)$ at a point of discontinuity in $(0,1)$. In particular we may suppose that

$$
\begin{equation*}
\chi(x)=\frac{1}{2}\{\chi(x-0)+\chi(x+0)\} \tag{1.5}
\end{equation*}
$$

for $0<x<1$ in which case we shall say that all discontinuities of $\chi(x)$ are normal.

$$
\text { If } \chi(x)=1-(1-x)^{\alpha}, \alpha>0, \text { then }\left(H, \mu_{n}\right) \equiv(C, \alpha) .
$$

On the other hand, if, for $q>0$

$$
\chi(x)= \begin{cases}0 & \text { for } 0 \leq x<1 /(1+q) \tag{1.6}\\ 1 & \text { for } 1 /(1+q) \leq x \leq 1\end{cases}
$$

then $\left(H, \mu_{n}\right)$ reduces to the familiar Euler-Knopp method (E, q).
Knopp and Lorentz ([6]) have proved that if (H, μ_{n}) defines a conservative (or regular) transformation then it also defines an absolutely conservative (or absolutely regular) transformation of the same type. Thus with a $\chi(x)$ satisfying (1.4), $\left(H, \mu_{n}\right)$ is an absolute convergence-preserving transformation.

2. Fourier series

Let $f(x)$ be a periodic function with period 2π, and Lebesgue integrable over $(-\pi, \pi)$ and let

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{\nu=1}^{\infty}\left(a_{\nu} \cos \nu x+b_{\nu} \sin \nu x\right) \tag{2.1}
\end{equation*}
$$

$$
\text { On }\left(H, \mu_{n}\right) \text { Summability of Fourier Series }
$$

we write

$$
\begin{align*}
& \phi(t)=\phi_{x}(t)=f(x+t)+f(x-t)-2 S \tag{2.2}\\
& \left\{\begin{array}{l}
g_{\delta}^{+}(x)=1 / \Gamma(\delta) \int_{0}^{x}(x-\nu)^{\delta-1} g(\nu) d \nu, \delta>0 \\
g_{\delta}^{-}(x)=1 / \Gamma(\delta) \int_{x}^{1}(\nu-x)^{\delta-1} g(\nu) d \nu, \delta>0
\end{array}\right. \tag{2.3}
\end{align*}
$$

where Γ denotes the well-known Gamma function.
These $g_{\delta}^{+}(x)$ and $g_{\delta}^{-}(x)$ are defined as the δ th forward and backward fractional integrals respectively of a function $g(x)$ defined and Lebesgue integrable in $(0,1)$. It is known that these integrals exists almost everywhere for $\delta>0$.

And

$$
\begin{equation*}
K_{n}(t)=\sum_{\nu=0}^{n}\binom{n}{\nu}\left(\Delta^{n-\nu} \mu_{\nu}\right) \frac{\sin \nu t}{t} . \tag{2.4}
\end{equation*}
$$

3. Introduction

In 1968, Sahney and Kathal ([8]) have proved the following theorem:
Theorem A. If $\phi(t)=o(t)$ as $t \rightarrow 0+$ and

$$
\lim _{p \rightarrow \infty} \int_{\pi / p}^{\eta} \frac{|\phi(t)-\phi(t+\pi / p)|}{t} \exp \{-p(1-\cos t)\} d t=0
$$

where η is constant, then the Fourier series is summable (B) to s at the point $t=x$.
In 1989, Verma and Agarwal ([13]) have proved a theorem on almost Hausdorff summability of Fourier series. They proved the following theorems:

Theorem B. If

$$
\int_{0}^{t}|\phi(u)| d u=o\left(\frac{t}{(\log 1 / t)^{\eta}}\right) \text { as } t \rightarrow+0
$$

and

$$
\int_{1 /(n+p)}^{1 /(n+p)^{\eta}} \frac{|\phi(u)|}{u} d u=o(1) \text { as } n \rightarrow \infty
$$

hold uniformly with respect to $p, 0<\eta<1$, then the Fourier series is almost $\left(H, \mu_{n}\right)$ summable to $f(x)$ at the point $t=x$.

The object of the present paper is to extend the above theorems to $\left(H, \mu_{n}\right)$ summability.

4. Main theorem

We shall prove the following theorem:
Theorem. If

$$
\begin{equation*}
\int_{0}^{t}|\phi(t)| d t=o(t) \text { as } t \rightarrow 0 \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\pi / n}^{\eta} \frac{|\phi(t)-\phi(t+\pi / n)|}{t} d t=o(n) \tag{4.2}
\end{equation*}
$$

where $0<\eta<1$, then the Fourier series (2.1) is $\left(H, \mu_{n}\right)$ summable to s at $t=x$ where the sequence μ_{n} is given by

$$
\begin{equation*}
\mu_{n}=\int_{0}^{1} x^{n} \chi(x) d x \quad n=0,1,2 \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{n}(t)=\sum_{\nu=0}^{n}\binom{n}{\nu}\left(\Delta^{n-\nu} \mu_{\nu}\right) \frac{\sin \nu t}{t} . \tag{4.4}
\end{equation*}
$$

5. Lemmas

We shall require the following lemmas for the proof of the theorem:
Lemma 1. ([11], Lemma 3)

$$
\sum_{\nu=1}^{n} \nu\binom{n}{\nu} x^{\nu}(1-x)^{n-\nu}=n x .
$$

Lemma 2. ([7], p.589)

$$
K_{n}(t)=o(1 / t) \text { for } \pi / n<t \leq \eta<\pi
$$

6. Proof of the theorem

Let $h_{n}(x)$ be the Hausdorff transformation of the sequence $\left\{s_{n}\right\}$ of the partial sums of the Fourier series (2.1). Then we have ([7])

$$
\begin{aligned}
h_{n}(x)-S & =1 / \pi \int_{0}^{\pi} \phi(t) K_{n}(t) d t+o(1) \\
& =1 / \pi\left(\int_{0}^{\pi / n}+\int_{\pi / n}^{\eta}+\int_{\eta}^{\pi}\right) \phi(t) K_{n}(t) d t+o(1)
\end{aligned}
$$

$$
\begin{equation*}
h_{n}(x)-S=I_{1}+I_{2}+I_{3}+o(1) \tag{6.1}
\end{equation*}
$$

Now when $0<\lambda t \leq 1,(\sin \lambda t) / t$ is a monotonic decreasing function of t. Hence by mean value theorem there exists a $\delta_{n}\left(0 \leq \delta_{n} \leq 1\right)$ such that

$$
\begin{aligned}
\left|I_{1}\right| & \leq\left\{\sum_{\nu=0}^{n} \nu\binom{n}{\nu}\left(\Delta^{n-\nu} \mu_{\nu}\right) \int_{0}^{\delta_{n} / n} \phi(t) d t\right\} \\
& =o\left(1 / n \int_{0}^{1}\left\{\sum_{\nu=0}^{n} \nu\binom{n}{\nu} x^{\nu}(1-x)^{n-\nu}|d \chi(x)|\right\}\right) \\
& =o\left(\int_{0}^{1} x|d \chi(x)|\right) \text { by Lemma } 1 .
\end{aligned}
$$

$$
\begin{equation*}
\left|I_{1}\right|=o(1) \tag{6.2}
\end{equation*}
$$

Now

$$
\begin{aligned}
I_{2}= & \int_{\pi / n}^{\eta} \phi(t) K_{n}(t) d t=\int_{\pi / n}^{\eta} \phi(t) / t d t \text { by Lemma } 2 \\
= & \left(\int_{\pi / n}^{\eta-\pi / n}\left(\left\{\frac{\phi(t)-\phi(t+\pi / n)}{t}\right\}+\frac{\pi}{n} \frac{\phi(t+\pi / n)}{t(t+\pi / n)}\right) d t\right. \\
& \left.-\int_{0}^{\pi / n} \frac{\phi(t+\pi / n)}{(t+\pi / n)} d t+\int_{\eta-\pi / n}^{\eta} \frac{\phi(t)}{t} d t\right)
\end{aligned}
$$

$$
\begin{equation*}
I_{2}=J_{1}+J_{2}+J_{3}+J_{4} \tag{6.3}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\left|J_{4}\right|=o(1) \tag{6.7}
\end{equation*}
$$

The combination of (6.4), (6.5), (6.6) and (6.7) gives us

$$
\begin{equation*}
I_{2}=o(1) . \tag{6.8}
\end{equation*}
$$

Now, by regularity condition of the method, we have

$$
\begin{equation*}
I_{3}=o(1) \tag{6.9}
\end{equation*}
$$

Finally the proof of the theorem is completed by considering (6.1), (6.2), (6.8) and (6.9).

References

[1] S. K. Bhatt and P. D. Kathal, The $(C, 1)(E, 1)$ summability of a Fourier series and its conjugate series, The Mathematics Education, 34(1)(2002), 1-7.
[2] D. Borwein, F. P. Cass and J. E. Sayre, On absolute generalized Hausdorff summability, Arc. Math., 46(1986), 419-427.
[3] P. Chandra and G. D. Dikshit, On the $|B|$ and $|E, q|$ summability of a Fourier series, its conjugate series and their derived series, Indian J. Pure Appl. Math., 12(11)(1981), 1350-1360.
[4] G. H. Hardy, Divergent Series, Oxford University Press, (1949).
[5] F. Hausdorff, Summation methoden and moment folgen, Math. Z., (1921), 74-109.
[6] K. Knopp and G. G. Lorentz, Beiträge zur absoluten Limitierung, Arch. Math., 2(1949), 10-16.
[7] B. Kwee, The Hausdorff summability of Fourier series, P. A. M. S., 21(1970), 586-592.
[8] B. N. Sahney and P. D. Kathal, A new criterion for Borel summability of Fourier series, Canad. Math. Bull., 12(5)(1969), 573-579.
[9] D. Singh, On a translated Cesàro type summability method I, Bull. Cal. Math. Soc., 92(3)(2000), 153-160.
[10] L. M. Tripathi and V. N. Tripathi, On almost Euler summability of a Fourier series, The Aligarh Bull. of Maths., 12(1987-89), 61-64.
[11] N. Tripathy, On the absolute Hausdorff summability of Fourier series, P. A. M. S., 24(1970), 586-592.
[12] N. Tripathy, On the absolute Hausdorff summability factors of the conjugate series of a Fourier series, Indian J. Pure Appl. Math., 16(10)(1985), 1138-1161.
[13] S. K. Verma and S. N. Agarwal, On almost Hausdorff summability of Fourier series, The Aligarh Bull. of Maths., 12(1987-89), 65-68.
[14] A. Zygmund, Trigonometric series, Cambridge University Press, (1959).

