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Abstract. The aim of the present paper is to establish for commutativity of rings with

unity 1 satisfying one of the properties (xy)k+1 = xkyk+1x and (xy)k+1 = yxk+1yk, for

all x, y in R, and the mapping x → xk is an anti-homomorphism where k ≥ 1 is a fixed

positive integer.

1. Introduction

Throughout this paper, R will represent an associative ring, Z(R) denotes the
center of R and for any pair of ring elements x, y in R, the symbol [x, y] stands for
the commutator xy − yx.

There are numerous results in the existing literature concerning commutativity
of rings satisfying various special cases of the following properties:

(P1) Let k ≥ 1 be a fixed integer such that (xy)k+1 = xkyk+1x, for all x, y ∈ R.
(P2) Let k ≥ 1 be a fixed integer such that (xy)k+1 = yxk+1yk, for all x, y ∈ R.

In most of the cases, the underlying polynomial identities in (P1) and (P2) are
particularly assumed for k = 1 (see [1] and [5]).

In an attempt to prove commutativity of rings satisfying such conditions, Abu-
jabal and Khan ([1]) have shown that a ring R with 1 is commutative if, for all x, y
in R, such that (xy)2 = xy2x or (xy)2 = yx2y. In the same paper, it is remarked
that the example 3 of [2] would demonstrate that each of the conditions (P1) and
(P2) does not assure commutativity for any choice of k > 1.

We present the same example in a slight different way which is rather easy to
appreciate.

Example 1.1. Let

R =



 αI +A

∣∣∣∣A =




0 β γ
0 0 δ
0 0 0


 , I =




1 0 0
0 1 0
0 0 1


 , where α, β, γ, δ ∈ Zp



 ,
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where p is a prime and Zp is the ring of integers modulo p. There is no prime
p such that p divides n if n is odd and p divides 2p/n if n is even. It can easily be
checked that R is not commutative.

Remark 1.2. The non-commutative ring of 3×3 strictly upper triangular matrices
over a ring of integers provide an example to show that the above properties (P1)
and (P2)are not valid for arbitrary rings.

The ring of the above Example 1.1 and Remark 1.2 shows that neither of the
properties (P1) nor (P2) guarantees the commutativity of arbitrary rings. It is
natural to ask: What additional conditions are needed to force the commutativity
for arbitrary ring which satisfies (P1) or (P2)?

To investigate the commutativity of a ring R with the property (P1) or (P2),
we need some extra conditions on R such as the property:

(*) Define a map x→ xk by an anti-homomorphism in R as follows:

(xy)k = ykxk and (x+ y)k = xk + yk for all x, y ∈ R

where k > 1 is a fixed positive integer.

One of the most beautiful result in Ring Theory is a theorem due to Herstein
([3]) which states that a ring R in which the mapping x → xn for a fixed integer
n > 1 is an onto homomorphism, must be commutative.The objective of this note
is to generalize above result when the map x → xk is an anti-homomorphism and
prove the following:

2. Main result

Theorem 2.1. Let R be a ring with unity 1 satisfying (P1) or (P2). If R satisfies
the property (∗), then R is commutative.

Proof. Assume that k > 1, in our hypothesis, we have

x(yx)ky = xkyk+1x for all x, y ∈ R.

By (∗) we get

(1) xk
[
x, yk+1

]
= 0, for all x, y in R.

Replace x by 1 + x in (1) and using (1 + x)k = 1 + xk to get

(2)
[
x, yk+1

]
= 0.

Again replacing 1 + y for y in (2) we obtain

(3) yk + y ∈ Z(R), for all x in R.
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Combining (3) with yk
2

+ yk ∈ Z(R), we have yk
2 − y ∈ Z(R), for all y ∈ R.

Hence the commutativity of R follows by an application of Herstein’s Theorem 18
of [4]. �

Similar arguments may be used if R satisfies the property (P2). The following
is an immediate consequence of Theorem 2.1.

Corollary 2.2. Let R satisfies the hypothesis of Theorem 2.1 with (P1) be replaced
by (xy)k+1 = yk+1xk+1. Then R is commutative.

Proof. By hypothesis we have

xy(xy)k = yk+1xk+1. Using(∗), to get
[
x, yk+1

]
xk = 0.

Now the rest of the proof carries over almost verbatim as above Theorem 2.1.
We omit the proof to avoid repetition. �

Remark 2.3. The following example demonstrates that anti-homomorphism can-
not be replaced by homomorphism in the Theorem 2.1 and Corollary 2.2.

Example 2.4. Consider the non-commutative ring

R =



aI +B

∣∣∣∣B =




0 0 0
b 0 0
c d 0


 , I =




1 0 0
0 1 0
0 0 1


 a, b, c, d ∈ GF (p)



 .

It can be easily seen that R satisfies (xy)p = xpyp, (xy)p+1 = xp+1yp+1, (x +
y)p = xp+yp for an odd prime p and (xy)4 = x4y4, (xy)5 = x5y5, (x+y)4 = x4 +y4,
for p = 2.

Remark 2.5. Existence of unity 1 in the hypothesis of Theorem 2.1 and Corollary
2.2 may be justified by the following:

Example 2.6. Let Dm be the ring of m×m matrices over a division ring D, and
Am = {(aij) ∈ Dm|aij = 0 when i ≤ j}. Then Am is necessarily non-commutative
ring for any positive integer m > 2. But A3 satisfies (P1) or (P2) and (∗).

We conclude our discussion with the following:

Problem 2.7. Let R be a ring with 1 satisfying the condition (P1) or (P2). Is R
commutative?
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