A Commutativity Theorem for Rings

M. S. S. Khan
Department of Mathematics \& Computer Science, University of Missouri-St. Louis, 8001 Natural Bridge Road, St. Louis, MO 63121-4499, U. S. A.
e-mail : shoeb21@hotmail.com

Abstract. The aim of the present paper is to establish for commutativity of rings with unity 1 satisfying one of the properties $(x y)^{k+1}=x^{k} y^{k+1} x$ and $(x y)^{k+1}=y x^{k+1} y^{k}$, for all x, y in R, and the mapping $x \rightarrow x^{k}$ is an anti-homomorphism where $k \geq 1$ is a fixed positive integer.

1. Introduction

Throughout this paper, R will represent an associative ring, $Z(R)$ denotes the center of R and for any pair of ring elements x, y in R, the symbol $[x, y]$ stands for the commutator $x y-y x$.

There are numerous results in the existing literature concerning commutativity of rings satisfying various special cases of the following properties:
$\left(P_{1}\right)$ Let $k \geq 1$ be a fixed integer such that $(x y)^{k+1}=x^{k} y^{k+1} x$, for all $x, y \in R$.
$\left(P_{2}\right)$ Let $k \geq 1$ be a fixed integer such that $(x y)^{k+1}=y x^{k+1} y^{k}$, for all $x, y \in R$.
In most of the cases, the underlying polynomial identities in $\left(P_{1}\right)$ and $\left(P_{2}\right)$ are particularly assumed for $k=1$ (see [1] and [5]).

In an attempt to prove commutativity of rings satisfying such conditions, Abujabal and Khan ([1]) have shown that a ring R with 1 is commutative if, for all x, y in R, such that $(x y)^{2}=x y^{2} x$ or $(x y)^{2}=y x^{2} y$. In the same paper, it is remarked that the example 3 of [2] would demonstrate that each of the conditions $\left(P_{1}\right)$ and $\left(P_{2}\right)$ does not assure commutativity for any choice of $k>1$.

We present the same example in a slight different way which is rather easy to appreciate.

Example 1.1. Let
$R=\left\{\alpha I+A \left\lvert\, A=\left(\begin{array}{ccc}0 & \beta & \gamma \\ 0 & 0 & \delta \\ 0 & 0 & 0\end{array}\right)\right., I=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\right.$, where $\left.\alpha, \beta, \gamma, \delta \in \mathbf{Z}_{p}\right\}$,

Received February 21, 2002, and, in revised form, July 4, 2002.
2000 Mathematics Subject Classification: 16U80.
Key words and phrases: Anti-homomorphism, commutator, polynomial identity.
where p is a prime and Z_{p} is the ring of integers modulo p. There is no prime p such that p divides n if n is odd and p divides $2 p / n$ if n is even. It can easily be checked that R is not commutative.

Remark 1.2. The non-commutative ring of 3×3 strictly upper triangular matrices over a ring of integers provide an example to show that the above properties $\left(P_{1}\right)$ and $\left(P_{2}\right)$ are not valid for arbitrary rings.

The ring of the above Example 1.1 and Remark 1.2 shows that neither of the properties $\left(P_{1}\right)$ nor $\left(P_{2}\right)$ guarantees the commutativity of arbitrary rings. It is natural to ask: What additional conditions are needed to force the commutativity for arbitrary ring which satisfies $\left(P_{1}\right)$ or $\left(P_{2}\right)$?

To investigate the commutativity of a ring R with the property $\left(P_{1}\right)$ or $\left(P_{2}\right)$, we need some extra conditions on R such as the property:
$\left.{ }^{*}\right)$ Define a map $x \rightarrow x^{k}$ by an anti-homomorphism in R as follows:

$$
(x y)^{k}=y^{k} x^{k} \text { and }(x+y)^{k}=x^{k}+y^{k} \text { for all } x, y \in R
$$

where $k>1$ is a fixed positive integer.
One of the most beautiful result in Ring Theory is a theorem due to Herstein ([3]) which states that a ring R in which the mapping $x \rightarrow x^{n}$ for a fixed integer $n>1$ is an onto homomorphism, must be commutative. The objective of this note is to generalize above result when the map $x \rightarrow x^{k}$ is an anti-homomorphism and prove the following:

2. Main result

Theorem 2.1. Let R be a ring with unity 1 satisfying $\left(P_{1}\right)$ or $\left(P_{2}\right)$. If R satisfies the property $(*)$, then R is commutative.
Proof. Assume that $k>1$, in our hypothesis, we have

$$
x(y x)^{k} y=x^{k} y^{k+1} x \text { for all } x, y \in R .
$$

By (*) we get

$$
\begin{equation*}
x^{k}\left[x, y^{k+1}\right]=0, \text { for all } x, y \text { in } R . \tag{1}
\end{equation*}
$$

Replace x by $1+x$ in (1) and using $(1+x)^{k}=1+x^{k}$ to get

$$
\begin{equation*}
\left[x, y^{k+1}\right]=0 \tag{2}
\end{equation*}
$$

Again replacing $1+y$ for y in (2) we obtain

$$
\begin{equation*}
y^{k}+y \in Z(R), \text { for all } x \text { in } R \tag{3}
\end{equation*}
$$

Combining (3) with $y^{k^{2}}+y^{k} \in Z(R)$, we have $y^{k^{2}}-y \in Z(R)$, for all $y \in R$. Hence the commutativity of R follows by an application of Herstein's Theorem 18 of [4].

Similar arguments may be used if R satisfies the property $\left(P_{2}\right)$. The following is an immediate consequence of Theorem 2.1.

Corollary 2.2. Let R satisfies the hypothesis of Theorem 2.1 with $\left(P_{1}\right)$ be replaced by $(x y)^{k+1}=y^{k+1} x^{k+1}$. Then R is commutative.
Proof. By hypothesis we have

$$
x y(x y)^{k}=y^{k+1} x^{k+1} . \operatorname{Using}(*), \text { to get }\left[x, y^{k+1}\right] x^{k}=0 .
$$

Now the rest of the proof carries over almost verbatim as above Theorem 2.1. We omit the proof to avoid repetition.

Remark 2.3. The following example demonstrates that anti-homomorphism cannot be replaced by homomorphism in the Theorem 2.1 and Corollary 2.2.

Example 2.4. Consider the non-commutative ring

$$
R=\left\{a I+B \left\lvert\, B=\left(\begin{array}{ccc}
0 & 0 & 0 \\
b & 0 & 0 \\
c & d & 0
\end{array}\right)\right., I=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) a, b, c, d \in G F(p)\right\}
$$

It can be easily seen that R satisfies $(x y)^{p}=x^{p} y^{p},(x y)^{p+1}=x^{p+1} y^{p+1},(x+$ $y)^{p}=x^{p}+y^{p}$ for an odd prime p and $(x y)^{4}=x^{4} y^{4},(x y)^{5}=x^{5} y^{5},(x+y)^{4}=x^{4}+y^{4}$, for $p=2$.

Remark 2.5. Existence of unity 1 in the hypothesis of Theorem 2.1 and Corollary 2.2 may be justified by the following:

Example 2.6. Let D_{m} be the ring of $m \times m$ matrices over a division ring D, and $A_{m}=\left\{\left(a_{i j}\right) \in D_{m} \mid a_{i j}=0\right.$ when $\left.i \leq j\right\}$. Then A_{m} is necessarily non-commutative ring for any positive integer $m>2$. But A_{3} satisfies $\left(P_{1}\right)$ or $\left(P_{2}\right)$ and (*).

We conclude our discussion with the following:
Problem 2.7. Let R be a ring with 1 satisfying the condition $\left(P_{1}\right)$ or $\left(P_{2}\right)$. Is R commutative?

Acknowledgements. The author thanks the learned referee for various useful suggestions towards the improvement of the original manuscript.

References

[1] H. A. S. Abujabal and M. A. Khan, Some elementary commutativity theorems for associative rings, Kyungpook Math. J., 33(1993), 49-51.
[2] E. C. Johnson, E. C. Outcalt and A. Yaqub, An elementary commutativity theorem for rings, Amer. Math. Monthly, 75(1968), 288-289.
[3] I. N. Herstein, Power maps in rings, Michigan Math. J., 8(1961), 29-32.
[4] I. N. Herstein, A generalization of theorem of Jacobson, Amer. J. Math., 73(1951), 756-762.
[5] G. Yuanchun, Some commutativity theorems for associative rings, Acta Sci. Natur. Univ.: Jilin, 3(1982), 13-18.

