Effect of Seeding Depth on Hypocotyl Growth, Hook Opening, and Sucrose Metabolism in Soybean

파종 심도가 콩의 하배축 생장과 Hook 열림 및 Sucrose 대사에 미치는 영향

  • Yun, Seung-Gil (Department of Plant Resources Science, Hankyong National University) ;
  • Lee, Sang-Gak (Department of Plant Resources Science, Hankyong National University) ;
  • Lee, Sang-Eun (Department of Plant Resources Science, Hankyong National University) ;
  • Park, So-Hyon (Department of Plant Resources Science, Hankyong National University) ;
  • Huh, Kwang-Woon (Department of Plant Resources Science, Hankyong National University) ;
  • Lim, Sun (Department of Plant Resources Science, Hankyong National University) ;
  • Kim, Tae-Wan (Department of Plant Resources Science, Hankyong National University)
  • 윤승길 (한경대학교 식물자원과학과) ;
  • 이상각 (한경대학교 식물자원과학과) ;
  • 이상은 (한경대학교 식물자원과학과) ;
  • 박소현 (한경대학교 식물자원과학과) ;
  • 허광운 (한경대학교 식물자원과학과) ;
  • 임선 (한경대학교 식물자원과학과) ;
  • 김태완 (한경대학교 식물자원과학과)
  • Received : 2003.10.14
  • Accepted : 2003.12.06
  • Published : 2003.12.30

Abstract

The relationship between seeding depth and apical hook opening was investigated in the hypocotyl hook of soybean (Glycine max Merr., cv. Hwanggeum). Seeds were sawn in different depths (2.5, 5.0, 7.5, and 10.0 cm). The hook opening was slowly progressed with seeding depth. Hook angle opening velocity was negatively correlated with hypocotyl growth at the significant level of P<0.01. It was also clearly observed that seeding depth was positively correlated with hypocotyl growth, suggesting the induction of hypocotyl growth by deep sawing. Futhermore, the contents of fructose and glucose in hypocotyls were about higher than in cotyledons. Both sugars in hypocotyls were highest at the emergence stage. After emergence, their levels were obviously reduced. Total soluble sugar contents continuously retained in cotyledons which were grown at 2.5 and 5.0 cm seeding depths whereas the contents in cotyledons of deep sawn soybean were extremely lowered. It seemed that sugars were actively used to cell construction during the hypocotyl elongation. The results demonstrated that apical hook opening is closely related with light signal after emergence. It implied that the delay of hook opening in deep sawn seeds was resulted from hypocotyl growth in darkness. We suggest that apical hook opening is progressed in sucrose catabolism by light.

파종심도차이에 의한 콩의 하배축 생장동안 hook 열림 정도와 sucrose 대사의 변화를 관찰하기 위하여 황금콩을 2.5, 5.0, 7.5 및 10.0 cm의 깊이로 파종하였다. hook 열림 정도는 파종심도가 깊을수록 늦어진다는 사실이 밝혀졌다. 또한 열림각도는 하배축생장과 1% 수준에서 고도의 부(-)의 상관을 나타냈다. 또한 파종심도는 하배축 생장과 고도의 정(+)의 상관관계가 있었으며 이는 파종심도가 깊을수록 하배축생장이 촉진된다는 것을 의미하였 다. 더 나아가 하배축에서의 fructose와 glucose 함량이 자엽보다 다량 존재한다는 사실이 밝혀졌다. 하배축에서 fructose와 glucose는 지상부 출현 직전에 가장 높았으며 출현 후 급격히 감소하는 경향이었다. 총 가용 당의 함량은 파종심도가 얄은 2.5 cm와 5.0 cm로 파종한 콩 종자에서는 출현 후 까지 지속적으로 유지되는 반면 파종심도가 깊은 종자에서는 현저히 낮았다. 이러한 결과는 파종심도가 갚은 종자에서 하배축의 과도한 생장동안 세포벽 등의 생성을 위해 당이 모두 소진되었기 때문이었다. 이런 현상은 hook 열림이 출현 후 광 signal과 밀접한 관계가 있음을 말해 주는 것이었다. 깊은 파종심도에서 hook 열림의 지연은 하배축 생장이 암상태에서 진행되기 때문이었다. 이는 정단부 hook 열림 현상이 광과 관계한 sucrose 분해대사와 함께 진행한다는 것을 의미하였다.

Keywords

References

  1. Carberry, P. S., and D. G. Abrecht. 1990. Germination and elongation of the hypocotyl and radicel of kenaf (Hibiscus cannabinus) in response to temperature. Field Crop. Res. 24:227-240 https://doi.org/10.1016/0378-4290(90)90040-I
  2. Dirk, L. M. A., A. R. van der Krol, D. Vreugdenhil, H. W. M. Hilhors, and J. D. Bewley. 1999. Galactomannan, soluble sugar and starch mobilization following germination of Trigonlla foenum-graecum seeds. Plant Physiol. Biochem. 37:41-50 https://doi.org/10.1016/S0981-9428(99)80065-5
  3. Ebell, L. F. 1969. Variation in total soluble sugars of conifer tissues with method of analysis. Phytochem. 8:227-233 https://doi.org/10.1016/S0031-9422(00)85818-5
  4. Feddes, R. A. 1972. Effects of water and heat on seedling emergence. J. Hydrol. 16:341-359 https://doi.org/10.1016/0022-1694(72)90138-2
  5. Finlay, M. J., J. M. Tisdall, and B. M. McKenzie. 1994. Effect of tillage below the seed on emergence of wheat seedlings in a hardsetting soil. Soil Till. Res. 28:213-225 https://doi.org/10.1016/0167-1987(94)90131-7
  6. Gee, H., and D. Vince-Prue. 1976. Control of the hypocotyl hook angle in Phaseolus mungo L : The role of parts of the seedlings. J. Exp. Bot. 27:314-323 https://doi.org/10.1093/jxb/27.2.314
  7. H$\aa$kansson, I., A. Myrbeck, and A. Etana. 2002. A review of research on seedbed preparation for small grains in Sweden. Soil Till. Res. 64:23-40 https://doi.org/10.1016/S0167-1987(01)00255-0
  8. Kang, B. G., and P. M. Ray. 1969. Role of growth regulators in the bean hypocotyl hook opening response. Planta 87:193-205 https://doi.org/10.1007/BF00389364
  9. Kirby, E. J. M. 1993. Effect of sowing depth on seedling emergence, growth and development in barley and wheat. Field Crop. Res. 35:101-111 https://doi.org/10.1016/0378-4290(93)90143-B
  10. Kuo, T. M., A. C. Lowell, and P. T. Smith. 1997. Changeslin soluble carbohydrates and enzymic activities in maturing soybean seed tissues. Plant Sci. 125:1-11 https://doi.org/10.1016/S0168-9452(97)04619-0
  11. Liscum. E., and R. P. Hangarter. 1993. Light stimulated apical hook opening in wild-type Arabidopsis thaliana seedlings, Plant Physiol. 101:567-572
  12. ahdi, L., C. J. Bell, and J. Ryan. 1998. Establishment and yield of wheat (Triticum turgidum L.) after early sowing at various depths in a semi-arid Mediterranean environment. Field Crop. Res. 58:187-196 https://doi.org/10.1016/S0378-4290(98)00094-X
  13. Nabi, G., C. E. Mullins, M. B. Montemayor, and M. S. Akhtar. 2001. Germination and emergence of irrigated cotton in Pakistan in relation to sowing depth and physical properties of the seedbed. Soil Till. Res. 59:33-44 https://doi.org/10.1016/S0167-1987(00)00182-3
  14. Pfeiffer, I., and U. Kutschera. 1995. Sucrose metabolism and cell elongation in developing sunflower hypocotyls. J. Exp. Bot. 46:631-638 https://doi.org/10.1093/jxb/46.6.631
  15. Rabe, C., and U. Kutschera. 1998. Sucrose metabolism during apical hook opening in sunflower hypocotyls. Plant Physiol. Biochem. 36:389-394 https://doi.org/10.1016/S0981-9428(98)80080-6
  16. Ross, H. A., H. V. Davies, L. R. Burch, R. Viola, and D. McRae. 1994. Developmental changes in carbohydrate content and sucrose degrading enzymes in tuberising stolons of potato (Solanum tuberosum). Physiol. Plantarum 90:748-756 https://doi.org/10.1111/j.1399-3054.1994.tb02533.x
  17. Rubinstein, B. 1971. The role of various regions of the bean hypocotyl on red light-induced hook opening. Plant Physiol. 48:183-186 https://doi.org/10.1104/pp.48.2.183
  18. Stanhill, G. 1965. Observations on the reduction of soil temperature. Agr. Meteorol. 2:197-203 https://doi.org/10.1016/0002-1571(65)90018-X
  19. Tamet, V., J. Boiffin, C. Durr, and N. Souty. 1996. Emergence and early growth of an epigeal seedling (Daucus carota L.): influence of soil temperature, sowing depth, soil crusting and seed weight. Soil Till. Res. 40:25-38 https://doi.org/10.1016/S0167-1987(96)01044-6
  20. van den Ende, W., and A. Van Laere. 1995. Purification and properties of a neutral invertase from the roots of Cichorium intybus. Physiol. Plantarum 93:241-248 https://doi.org/10.1111/j.1399-3054.1995.tb02223.x