논토양에서 유효인산 함량과 인산 흡수능에 따른 0.01 M CaCl2 가용 인산 농도 변화

Dependence of 0.01 M CaCl2 Soluble Phosphorus upon Extractable P and P Sorptivity in Paddy Soil

  • Jung, Beung-Gan (National Institute of Agricultural Science and Technology) ;
  • Yoon, Jung-Hui (National Institute of Agricultural Science and Technology) ;
  • Kim, Yoo-Hak (National Institute of Agricultural Science and Technology) ;
  • Kim, Seok-Hyeon (College of Agriculture, Gyeongsang National University)
  • 투고 : 2003.06.04
  • 심사 : 2003.12.03
  • 발행 : 2003.12.30

초록

논토양의 환경기준 인산지표 예측기술개발을 위하여 논토양 35점을 $25{\pm}1^{\circ}C$ 에서 1, 2, 4주간 담수 항온한 결과 담수 항온 전 풍건 토양의 $0.01M\;CaCl_2$ 가용인산 함량과 유효인산 함량 및 인산흡수능의 관계는 습토로 분석할 경우 상관계수의 크기는 유효인산/인산흡수량>유효인산>유효인산/인산흡수계수>인산흡수량>총인산>인산흡수계수 순이었고, 항온기간별 상관계수 크기는 습토로 분석할 경우 항온이 길어질수록 상관계수는 점점 낮아 졌으나, 건토로 분석할 경우는 이와 반대 경향이었다. 토양의 유효인산 함량과 인산흡수량을 활용하여 $0.01M\;CaCl_2$ 가용인산 농도를 추정할 수 있는 관계식 $0.01M\;CaCl_2-P=0.0828$ (유효인산/인산흡수량) + 0.0374을 얻었으며, 이러한 관계식은 토양의 인산 함량과 인산흡수 특성을 고려하여 작물재배에 필요한 적정 유효인산 함량의 추정과 토양 인산의 유실 가능성 등을 예측하는데 활용될 수 있을 것이다.

Removal of phosphate from soil by leaching, runoff, and plant uptake is strongly influenced by the content and absorption characteristics of P in soil. In this study the relationships between water soluble phosphate and phosphate retention capacity of the soil was investigated. Water soluble and available phosphate, and phosphate absorption characteristics of 35 paddy soils were measured during incubation at $25^{\circ}C$. Water soluble phosphate content was highly correlated with available phosphate content, phosphorus absorption capacity (PAC), and phosphate absorbed (PS) in air-dried and wet soils. The most significant relationship was found between water soluble phosphate and the ratio of available phosphate and phosphate sorbed, and the relationship $0.01M\;CaCl_2-P=0.0828$ (Av. $P_2O_5/PS$)+0.0374 could be suggested for the estimation of water soluble phosphate from soil phosphorus characteristics.

키워드

참고문헌

  1. Aslyng, H. C. 1964. Phosphate potential and phosphate status of soils. Acta Agric. Scand. 14:261-285 https://doi.org/10.1080/00015126409435669
  2. Dorich, R. A., D. W. Nelson, and L. E. Sommers. 1985. Estimating algal available phosphorus in suspended sediments by chemical extraction. J. Environ. Qual. 14:400-405 https://doi.org/10.2134/jeq1985.00472425001400030018x
  3. Fox, R. L., and E. J. Kamprath. 1970. Phosphate sorption isotherm for evaluation the phosphate requirements of soils. Soil Sci. Soc. Am. Proc. 24:902-909
  4. Hossner, R. L., J. A. Freeouf, and B. L. Folson. 1973. Solution phosphorus concentration and growth of rice in flooded soil. Soil Sci. Soc. Am. Proc. 37:405-408 https://doi.org/10.2136/sssaj1973.03615995003700030028x
  5. Kim, C. S., and S. H. Yoo. 1991. The effect of submergence on phosphorus adsorption characteristics in soils, I. Changes of adsorption maximum, adsorption equilibrium constant and heat of adsorption. J. Korean Soc. Soil Sci. Fert. 24:109-115
  6. NIAST. 1988. Methods of soil chemical analysis. National Institute of Agricultural Science and Technology, Suwon, Korea
  7. Nriagu, J. O. 1972. Stability of vivianite and ion-pair formation in the system $Fe_3(PO_4)_2-H_3PO_4-H_2O.$ Geochim. Cosmochim. Acta 36:459-479 https://doi.org/10.1016/0016-7037(72)90035-X
  8. Patrick, W. H., and I. C. Mahapatra. 1968. Transformation and availability to rice of nitrogen and phosphorus in waterlogged soils. Adv. Agron. 22:339-354
  9. Ponnamperuma, F. N. 1972. Chemistry of waterlogged soils. Adv. Agron. 24:29-96 https://doi.org/10.1016/S0065-2113(08)60633-1
  10. RDA. 1999. A counter measuring studies to the changes of agricultural environment. Monitoring of the soil fertility in major agricultural land. Rural Development Administration, Suwon, Korea
  11. Sharpley, A. N., L. R. Ahuja, M. Yamamoto, and R. G. Menzel. 1981. The kinetic of phosphorus desorption from soil. Soil Sci. Soc. Am. J. 45:493-496 https://doi.org/10.2136/sssaj1981.03615995004500030010x
  12. Sharpley, A. N. 1995. Dependence of runoff phosphorus on extractable soil phosphorus. J. Environ. Qual. 24:920-926 https://doi.org/10.2134/jeq1995.00472425002400050020x
  13. Shin, C. W., J. J. Kim, and J. H. Yoon. 1988. Studies on the characteristics of phosphorus in the upland soil. 1. Composition of accumulated phosphorus forms and available phosphorus. J. Korean Soc. Soil Sci. Fert. 21:21-29
  14. Kunishi. 1985. Soil test for estimating labile, soluble, and algae-available phosphorus in agricultural soils. J. Environ. Qual. 14:341-348 https://doi.org/10.2134/jeq1985.00472425001400030008x
  15. Yoon, J. H., C. W. Hong, and B. L. Huh. 1982. Interrelationships among pH, pe, $Fe^+^+$ and water soluble phosphate in reduced soil-water suspension. J. Korean Soc. Soil Sci. Fert. 15:162-165
  16. Yoon, J. H. 1983. Parameters of soil phosphorus availability factors in predicting yield response and fertilizer recommendation. Ph. D. Thesis. Dongguk University, Seoul, Korea
  17. Yoon, J. H., B. G. Jung, and Y. H. Kim. 1998. Dependence of 0.01 M $CaCl_2$ soluble phosphorus on extractable P and P sorptivity in upland soil. J. Korean Soc. Soil Sci. Fert. 31:266-270