Feasibility of Phytoremediation for Metal-Contaminated Abandoned Mining Area

광산 인근 토양의 중금속 오염에 따른 식물정화기술의 적용성 탐색

  • Ok, Yong-Sik (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Kim, Si-Hyun (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Kim, Dae-Yeon (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Lee, Han-na (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Lim, Soo-Kil (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Kim, Jeong-Gyu (Division of Environmental Science and Ecological Engineering, Korea University)
  • 옥용식 (고려대학교 생명환경과학대학 환경생태공학부) ;
  • 김시현 (고려대학교 생명환경과학대학 환경생태공학부) ;
  • 김대연 (고려대학교 생명환경과학대학 환경생태공학부) ;
  • 이한나 (고려대학교 생명환경과학대학 환경생태공학부) ;
  • 임수길 (고려대학교 생명환경과학대학 환경생태공학부) ;
  • 김정규 (고려대학교 생명환경과학대학 환경생태공학부)
  • Received : 2003.07.07
  • Accepted : 2003.10.08
  • Published : 2003.10.30

Abstract

This study was carried out to provide information for the present status of soil pollution near abandoned old-zinc mining area through analysis of bound form and 0.1 N-HCl extractable concentrations of heavy metals in soils and plants. Feasibility of endemic plants for phytoremediation was evaluated by the investigation of vegetation in soils. Cd contents of the selected samples near old-zinc mining soils ranged from 0.2 to $42mg\;kg^{-1}$. Nonagricultural soils near the mining area contained great amounts of Zn, Pb, Cd, and Cu than the paddy and upland soils. Some Korean wild plants, Artemisia princeps, Artemisia montana, Erigeron canadensis, and Pueraria thunbergiana, were found to grow vigorously in the studied area. Among them, Artemisia princeps was selected as a possible phytoremediator for cleaning heavy metal contaminated soils. Artemisia princeps contained about 43 and $52mg\;kg^{-1}$ of Cd in their root and shoot as dry weight, respectively. Average contents of Cd in the rhizosphere soil, $15.68mg\;kg^{-1}$, was slightly higher than the soil-root interface soils, $14.1mg\;kg^{-1}$. Sequential extraction of Cd contaminated soils showed that average $2.4mg\;kg^{-1}$ (about 7%) of cadmium existed as exchangeable form and the average amounts increased as follows : adsorbed < organically bound < exchangeable << oxide carbonate << sulfide residual fractions. Amendment of organic by-product fertilizer in metal-contaminated soils promoted the growth of roots significantly as compared with the other treatments containing chemical fertilizer.

전국적으로 산재해있는 2,000여 광산지역의 경우 중금속 오염의 정도와 범위를 고려할 때, 기존의 물리 화학적 복원기술의 적용만으로는 경제성과 실효성의 조화가 어렵다. 이에 기존의 토양 복원기술과 더불어 생물학적 복원기술로써 phytoremediation 기술의 개발이 요구된다. 본 연구는 경기도 광명시에 위치한 폐아연광산 인근 토양 및 식물체내의 중금속 함량과 토양내 Cd의 존재형태별 분포를 파악하여 인근 농경지로의 잠재적 오염원이 되는 부지를 선정하고, 오염 토양에 대한 phytoremediation 적용을 위한 기초 조사를 수행하였다. 17지점에서 채취한 논 밭 및 비경작지 토양의 0.1 N-HCl 추출 Cd 함량은 $0.2-42mg\;kg^{-1}$의 분포를 보였고, Cd 함량이 상대적으로 높은 비경작지 토양의 중금속 함량은 Zn $533-2320mg\;kg^{-1}$, Pb $560-3584mg\;kg^{-1}$, Cu $104-1277mg\;kg^{-1}$, Cd $11-42mg\;kg^{-1}$의 범위로 나타났다. pH를 1에서 3까지 조절하며 수행한 중금속 용출시험 결과 pH 변화에 따른 중금속 용출의 정도는 매우 컸다. 대부분의 토양은 유기물 및 질소함량이 극히 낮고, 평균 토성은 사양토로 전국적으로 분포하는 광산토양의 평균 이화학성 범위 내에 있어 Cd, Zn 및 Pb의 생물학적 복원부지로서의 적합성을 보였다. 본 연구에서 정화식물종으로 선별한 식물은 아연광산에 서식하는 대표적 초본류인 쑥이며, 체내 중금속 함량은 지상부 $43mg\;kg^{-1}$, 지하부 $52mg\;kg^{-1}$의 Cd 함량을 보였다. 채취한 식물체 주변 근권 토양 (rhizosphere soil)과 경계면 토양 (soil-root interface soil)은 각각 15.68, $14.09mg\;kg^{-1}$의 Cd 함량을 나타내었다. 토양에 대한 연쇄추출 결과 $H_2O$(water soluble), NaOH (organically bound), $KNO_3$ (exchangeable), EDTA (oxide/carbonate), $HNO_3$ (sulfide/residual)의 순으로 Cd 추출효율이 증가하였으며, 토양내 치환태 Cd는 평균 $2.4mg\;kg^{-1}$으로 나타났다. 중금속 오염부지에 대한 식물 식재시 퇴비의 투여량은 지하부 표면적 및 뿌리부피와 밀접한 상관관계를 나타내어 오염 토양내 식피조성시 식물체의 활착율을 증대 시킬 수 있을 것으로 사료된다.

Keywords

References

  1. Baker, A. J. M., and P. L. Walker. 1990. Ecophysiology of metal uptake by tolerant plants, p. 155-157. In A. J. Shaw (ed.) Heavy metal tolerance in plants: evolutionary aspects. CRC Press Inc., Boca Raton, Florida, USA
  2. Chang, A. C., A. L. Page, J. E. Wameke, and E. Grgurevic. 1984. Sequential extraction of soil heavy metals following a sludge application. J. Environ. Qual. 13:33-38 https://doi.org/10.2134/jeq1984.00472425001300010006x
  3. Cunningham, S. D., and W. R. Berti. 1997. Phytoextracdon or phytostabilization: technical, economic, and regulatory considerations of the soil-lead issue, In N. Terry (ed.) Proceedings of 4th international conference on biogeochemistry of trace elements, Berkeley, California, USA
  4. Cunningham, S. D., T. A. Anderson, A. P. Schwab, and F. Hsu. 1996. Phytoremediation of soils contaminated with organic compounds. Adv. Agron. 56:55-114 https://doi.org/10.1016/S0065-2113(08)60179-0
  5. Cunningham, S. D., W. R. Berti, and J. W. Huang, 1995. Phytoremediation of contaminated soils. Trends Biotechnol. 13:393-397 https://doi.org/10.1016/S0167-7799(00)88987-8
  6. Emmerich, W. E., L. J. Lund, A. L. Page, and A. C. Chang. 1982. Solid phase forms of heavy metals in sewage sludge-treated soils. J. Environ. Qual. 11:178-181 https://doi.org/10.2134/jeq1982.00472425001100020007x
  7. Gobran, G. R. 2001. Trace elements in the rhizosphere. CRC Press, New York, USA
  8. Gobran, G. R., and S. A. Clegg. 1996. Conceptual model for nutrient availability in the mineral soil-root system. Can. J. Soil Sci. 76:125-131 https://doi.org/10.4141/cjss96-019
  9. Gwangmyeong city. 1994. Counterplan for soil pollution prevention (summary). Gwangmyeong City, Korea
  10. Jung, G. B., W. I. Kim, K. L. Park, and S. G. Yun. 2001. Vertical distribution of heavy metals in paddy soil near abandoned metal mines. Korean J. Environ. Agric. 20:297-302
  11. Jung, K. C., B. J. Kim, and S. G. Han. 1993. Survey on heavy metals in native plant near old zinc-mining sites. J. Korean Soc. Soil Sci. Fert. 12:105-111
  12. Kim, J. G. 1994. Natural sink-systems for pollutants treatment. Natural Resource Environ. Res. 2:29-48
  13. Kim, J. G., S. K. Lim, S. H. Lee, C. H. Lee, and C. H. Jeong. 1999. Evaluation of heavy metal pollution and plant survey around inactive and abandoned mining areas for phytoremediation of heavy metal contaminated soils. Korean J. Environ. Agric. 18:28-34
  14. Lee, S. E. 2000. Putative mechanism of cadmium tolerance in rice cultivar (Oryza sativa). MS dissertation. Ewha Women's University, Seoul, Korea
  15. MOE. 1991. Standard methods of water analysis. Ministry of Environment, Seoul, Korea
  16. NIAST. 2000. Methods of soil and plant analysis. National Institute of Agricultural Science and Technology, Suwon, Korea
  17. Ok, Y.S. 2003. Empirical and mechanistic approach to adsorption and bioavailability of cadmium is soils and Plants : Implications in phytoremediation. Ph. D. Dissertation, Korea University, Korea
  18. Park, J. K., K. S. Lee, and S. K. Lee. 1995. Agricultural soil resources and fertility maintenance. p. 69-98. In Proceedings of Agricultural Science Symposium. National Institute of Agricultural Science and Technology, Suwon, Korea
  19. Park, Y. H. 1994. Management practices of inactive and abandoned metalliferous mine areas in Korea. Korean Environment Technology & Research. KETRI/1994/RE-14, Seoul, Korea
  20. Raskin, I., and B. D. Ensley. 2000. Phytoremediation of toxic metals. John Wiley Sons, Inc., New York, USA
  21. Ure, A. M., and C. M. Davidson. 1996. Chemical speciation in the environment. Blackie Academic and Professional, London, UK
  22. Yoo, S. H., K. J. Ro, S. M. Lee, M. E. Park, and K. H. Kim. 1996. Characterization of heavy metals in the stream sediment around an old zinc mine. J. Korean Soc. Soil Sci. Fert. 29:432-438