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Abstract

In this paper we investigate the relevance logic E-R of the Entailment E without
the reductio (R), and its extensions Ee-R, Eec-R: Ee-R is the E-R with the
expansion (e) and Eec-R the Ee-R with the chain (¢). We give completeness for each
E-R, Ee-R, and Eec-R by using Routley-Meyer semantics.

1. Introduction

Among relevance systems, E of Entailment has been conside
important from early on in the study of relevance logics. Note tha
the favorite of Anderson and Belnap: they are the beginners of r
logics (see [1]). Most of all, this system is important in the sense
implication, i.e.. so called entailment, shows ‘necessity’ and 'r
which are the necessary and sufficient conditions of logical imp
note that the strict implication of modal logic just shows the ‘ne
and that the relevant implication of R just the 'relevance’. (cf. (1

Many (algebraic) papers say that this system has the same
connectives as the classical logic with respect to conjunction,
disjunction, and negation (see (5)). However, exactly speaking
(from the algebraic point of view), this is not true. When we
consider 'De Morgan lattices’ (or 'quasi-Boolean algebras’) that
characterize E with respect to those connectives, we find that E

has one unnatural axiom scheme, i.e, the reductio (R), in the
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sense that this is not the part characterized by those algebras.l)

Thus, in (14) we investigated some neighbors of the relevance
T of Ticket Entailment without the reductio (R), ie., the T w
(T-R), and its extensions the T-R with the expansion (e)
(Te-R), the Te-R with the chain (c¢) (Tec-R). We also gave
completeness for these systems by using Routley-Meyer (RM)
semantics. Note that in it we already explained why relevance
systems without R, e.g.. T-R, can be formally (or algebraically)
interesting: that E is not decidable and that the decidability of
EW, i.e., the E without the contraction (W), still remains as an
open question (see (3, 4, 8, 13)). Note also that e is important
{and useful) in decidability and ¢ is impertant when we consider
any system to be many-valued logic, especially infinite-valued
logic, (consider the intuitionist propositional logic H and the
Dummett’s LC of its infinite-valued extension that can be
regarded as the H with ¢).

We, however, postpone to investigate the decidability of the
neighbors of E with e and ¢ (as many-valued logics) to another
occasion because we need too much space to complete it in this
paper. Instead, we just show that the same idea as in {14} can
be applied to the system E. Namely, we investigate the E
without R (E-R), the E-R with e (Ee-R), and the Ee-R with c
{Eec-R). Note that Routley and Meyer (10, 11} investigated RM
semantics for Positive Entailment E° and E and gave

completeness for each system. However, they did not do that for

1) To understand the meaning of “characterize” (or " characteristic”’), see this passage in
[7}: "Given a matrix M, let Taut(M) (the "tautologies of M”) be the set of sentences
that take designated values for every interpretation in underlying algebra. Given a
unary assertional logic L, a matrix M is said to be characteristic for L whenever for
all sentences §, 1 ¢ iff ¢ € Taut(M).”
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the above E-systems, and we have not yet found any literature
that investigated them. So, we give RM semantics for each E-R,
Ee-R, and Eec-R, and thus its completeness. This means that
the neighbors of E with e and ¢ can be semantically complete.
For convenience, by FE(ec)-E we shall ambiguously express
E-R, Ee-R, Eec-R all together, if we do not need distinguish
them, but context should determine which system is intended:
often by E(e)-R, just E-R and Ee-R. Depending on the works of
Routley and Meyer, and Dunn in (2, 5, 10. 11, 12}, we can
show the completeness for Elec)-R. We shall also adopt the
similar notation, terminology, and results found in them, and

assume familiarity with them.

2. Axiom Schemes and Rules for E(ec)-R

For convenience, we present just the axiom schemes and the
inference for E(ec)-R. For the remainder we shall follow the cu
notation and terminology. The formation of E(ec)-R can be given

following list of axiom schemes and rules:

AXIOM SCHEMES

Al. A->B) - ((B—-C -l —->C) (suffixing)
A2. A—-A—->B) —>(A—->B (contraction)
A3. (A — A) - B)—-B (specialized assertion)
Ad. AANB —-A (AAB —B (A —elimination)
A5 (A - B) A (A — C)) - (A — (B A C)(A-introduction)
AG6. A—-{(A Vv B)y, B—-{(A vV B (Vv -introduction)

A7. (A—-C) A B —C) — (A v B) — C) (Vv-elimination)
A8. (A AN BV CH —= (A A B v (A A C)(distributive law)
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A9. (OA A B — 1A A B where (JA = (A — A) —
A

AlQ. ~~A — A {classical double negation)
All. (A - ~B) > B — ~A) (contraposition)
Al2. (A - B) —» (A - (A — B) (expansion)
Al3. (A—>B) v B— A) (chain)
RULES

A-—B A+ B (modus ponens (MP))
AABrHAAB {(adjunction (AD))
DEFINITION

dfl. A-B:= ~(A - ~B)

SYSTEMS

E-R. Al - AlY;
Ee-R. E-R + AlZ
Eec-R. Ee-R + Al3.

3. Routley-Meyer frames and models for E(ec)-R

Following (2, 5, 7], calling relevant model structures
Routley-Meyer (EM) frames, we define an (RM) frame. A frame
is a structure S = (U, =, R, Z, ), where (U, T, R, 7) is a left

assertional frame2) and 1is a unary operation on U, such that

2) That is, U is a set, Z (& U) is a left lower identity (Z = A < A) satisfying the
following 1li
() 3, € Z, (Rlap) iff a = B,
R ¢ U3 and C is a partial-order satisfying;
Rafy & o = a imply Ra’py,
Rafy & B’ = B imply RaBYy,
Rafy & v = v imply RaPy.
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the following definitions and postulates hold:3) (¢ € Z)

df2. a = B = JYURIP)

df3. R%pvd := Ix(Rabx & Rxvd)

df4.  Rf(pv)d := Ix(Raxd & RBvx)
df5. Sa 1= V x, y(Raxy = 3L(RIxy))

(With respect to the following postulates, just for convenience,
to represent some { we take 0, which Routley and Meyer take in
their semantics. Note that 0, by which we represent some { (&
7). itself is a member of Z, i.e.. 0 € Z4)

p0.  Rapv and ¢’ = a imply Ra'By (monotonicity)
pl.  Rlafvd = R%B(av)s

p2.  RaBv = R7appv

p3.  Vadx{Sx and Raxa)

p4. Raaa (idempotence)
p5.  Rapy = Rav'f’

p6. d =a

p7.  Rapv => Ix(Rxpa & Rafy)

p8.  ROap or ROBa

For E-R, dfl - df5 plus p0 - p6:
For Ee-R, definitions and postulates of E-R + p7:

More exactly to understand a left assertional frame, see [7]. Note that U is expressed
as K in [5] (as well as in [11, 12]); and that, for convenience, we take a left lower
identity in place of a right lower one, which Dunn and Hardegree take in [7]}

3) Note that we take df5 for the modal character of E (see [2]).

4) Often, in proofs of section 4 and 5, by 0 we shall also ambiguously represent some
{, if we do not need distinguish them, but context should determine what is
intended.
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For Eec-R, definitions and postulates of Ee-R + p8.

Note that each postulate for E-R, i.e., pl to p6, is those in
{2, 5, 11): that p7 and p8 is those in {14): that we have p0
following (5, 7): also that © is a partial order (p.o.) on U with
respect to E(e)-R, i.e., E-R and Ee-R, and a linear order (l.o.)
on U with respect to Eec-R. Following Dunn (and Hardegree) [6)
(and (7)), we regard U as a set of “states of information’’, and
for a, B € U, a £ B means that the information of a is included
in that of B.

By a model for E(ec)-R, we mean a structure M = (U, &£, R,
7. . k), where (U, =, R, Z, ) is a frame and F is a relation
from U to sentences of E(ec)-R satisfying the following

conditions:

(Atomic Hereditary Condition (AHC))

for a propositional variable p, if a F p and a = B, then B F
p; (Evaluation Clauses (EC)) for formulas A, B

(N) aEAAB iff at Aandak B:

(V) arFAVB iff ak Aorak B:

(=) a= A—B iff forall B, v, if Ry and B = A, then

Y E B
(~) aE ~A iff o ¥ A

A formula A is true on v at a of U just in case a F A; A is
verified on M in case { (especially 0), € Z, E A: A entails B on
M in case ¥x € U, if x & A, then X & B} A Efec)-R-entails B
just in case A entails B in every model; and A is E(ec)-R-valid

in a frame 8 just in case it is verified in all evaluations therein.
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Let 2 be the class of frames. A sentence A is E(ec)-R-valid, in
symbols Ereo-r A, if and only if VS & 2, A is Efec)-R-valid in
S.

4. Soundness for E(ec)-R

Following (2, 5), we give the soundness for E(ec)-R. To prove
it, we need the Verification Lemma below. First, by an induction

on A, we can easily prove

Lemma 1 (Hereditary Condition (HC) For any formula
F A and a C B, then 8 F A},

Since with respect to the connectives ~, A, V, —, we have
the same evaluations as in (2, 5, 12], we can use the

Verification Lemma in them. Thus,

Lemma 2 (Verification Lemma) A entails B on v only if A —
B is verified, i.e.. true at { (€ Z), on v. Thus, A entails Bin a
given model M, = (U, =, R, %, , &), only if A — B is
E(ec)-R-valid in the model: that is, for every X (€ U) if x F A
then X £ Bonly if L # A — B. And A E(ec)-R-entails B only if
A — B is E(ec)-R-valid.

Proof: By Lemma 2 and 3 in (12) and definitions. (Using Lemm

can also prove this, see the Verification Lemma in (2, 5)). O

Let FEgeo-r A be the theoremhood of A in E(ec)-R. We note
that each postulate was used in (2. 5, 11, 12, 14). Thus, the
Soundness for E{ec)-R is immediate.
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Proposition 1 (Soundness) If Feeo-r A, then Freor A.

Proof: We just prove that each instance of the axiom scheme
valid in all frames. i.e., E{ec)-R-valid, as an example. For Al2,
it suffices by Lemma 2 to assume that a F A — B and show a
A — (A — B). To show this last, we assume that p7 holds.
First, by the assumption and (—), we can assume that Rafv and
§ = A only if v & B. Then, by p7, there is X such that Rxpa and
RaBy, and thus using (—), we obtain X £ A — (A — B) from the
assumptions. From this, we get that B F Aonly ifa = A — B
by RxBa, and thus by Rapv § = A only if ¥ & B, as desired.

With respect to each instance of the other axiom schemes, we
note this: from Lemma 4 in (12), it follows that each instance of
the conjunction, disjunction, and negation axiom schemes, i.e.,
A4 to A8, Al0, and All, is E(ec)-R-valid: by Lemma 5 in (11]
and those of § 48.6 in (2], each instance of Al to A3 and A9 is
E(ec)-R-valid: by Proposition 1 in [14), each instance of Al3 is
Eec-R-valid.

From Proposition 1 in {14], it follows that each rule, i.e.,

preserves E(ec)-R validity. ]
5. Completeness for E(ec)-R

We give the completeness for E{ec)-R by using the well-known
Henkin-style proofs for modal logic, but with prime theories in
place of maximal theories. To do this. we define some theories.
We interpret FEeeo-r as the deducibility consequence relation of
the logic E(ec)-R. By an E(ec)-E-theory, we mean a set T of
sentences closed under deducibility, i.e., closed under MP and
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AD: by a prime Efec)-R-theory, a theory T such that if A V B
€ T, then A € T or B € T: and by a trivial E(ec)-E theory,
the entire set of sentences of Efec)-R. As Dunn states in
Remark 4 in (6], we note that an E(ec)-R-theory T contains all
of the theorems of E(ec)-R. Thus it is what has been called a
“regular theory’” in the relevance logic literature. That is, by an
E(ec)-R-theory we mean a regular E(ec)-R-theory. This means
that T is never empty. In the results below, there is no role
either for trivial E(ec)-R theories. Hence, by an “Elec)-R
theory”” we mean a non-trivial one.

Let a canonical E(ec)-R-frame be a structure S = (Ucan, CSean,
Rean. Zean, can). Where Cen is an information order on Ucan. Zean iS
a set of any prime E(ec)-R theory, i.e., {an (€ Zean), Zean & Ucan,

Ucan 18 the set of prime E(ec)-R theories extending lcan, Rean is R
below restricted to Ucan,

(1)  RafBv iff for any formula A, B of E{ec)-R, if A > B € «a
and A € B, then B € v,

and can is " restricted to Uen. We call a frame fitting for
E(ec)-R if for each axiom scheme of E(ec)-R the corresponding
semantical postulate holds. Where @ is a prime theory, let a be
the set of every formula A such that ~A does not belong to g,
fe..d = {A: ~A € a}.

As we mentioned above, we take the ideas of proofs from the
Henkin-style completeness proofs. Thus, note that the base Gun,
ie., 0, among Lan (€ Zen), is constructed as a prime
E(ec)-R-theory that excludes nontheorems of E(ec)-R, i.e.,

excludes A such that not Fgeo- A. Note also that in proofs
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below, by 0. i.e.., Owun, we often represent Lcan (as well as 0) if
context can make clear what is intended (cf. see section 3). The
partial orderedness and the linear orderedness of a canonical
E(ec)-R-frame depend on * restricted on U.n. Then, first, it is
obvious that

Proposition 2 A canonical E(ec)-R-frame is partially ordered.

Proposition 3 For Ef{ec)-R, a2 canonical frame is connected
(and thus linearly ordered).
Proof:By Proposition 3 in {14}, [J

Proposition 4 The canonically defined E(ec)-R-frame is a
fitting for Efec)-R}.

Proof:As an example we just prove that p7 holds. (Note that
to prove the other postulates it is enough for us to point out
Theorem 1 of section 48.3, and 48.6 in (2}, Lemma 6 in (11],
Lemma 13 in (12]. and Proposition 4 in (14].)

For p7. we assume that Rafv. We need to show that there is a
prime theory X such that R¥pa and RaPyv. Suppose A — B € a and
A = B, Then, A — (A — B) € a by Al2. Let us take a to be X,
Then, by the assumptions, we obtain RaPa and RaBv. That is, by
the assumptions A — (A — B) € a, A € B, we get A > B € q
and by the assumptions A — B € a, A & B, we obtain B € ¥, as
desired. Since a is a prime theory, it ensures that there is a

prime theory that satisfies p7. [

Next, we need to define an appropriate relation £ on S, =
(Ucan. Ccan, Rcan, ann, .can)A We deﬁne it to be that
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akF A iff Aca
However, we need to verify that this satisfies AHC and EC
Note that since the positive part of E(ec)-R satisfies Definiti
section 42.1 in (2], we can directly use Fact 1 and Fact 2 of
section 48.3 in [2), which are considered for R™, and thus we

can use Theorem 2 of the same section.

Proposition 5 The canonically defined (Ucan, Zcan, Rean. Zean,
“wan, F) is indeed an E(ec)-R model.
Proof:By Proposition 5 in (14}, [J

Thus, (Ucan, Zean. Rean. Zean. can. F) is an E(ec)-R model. So,
since, by construction, 0 excludes our chosen nontheorem A and
the canonical definition of & agrees with membership, we can
state that for each nontheorem A of E(ec)-R, there is an E(ec)-R
model A in which A is not 0 E A. It gives us the (weak)

completeness for E(ec)-R as follows.
Theorem 1 (Weak Completeness) If Egeo-r A, then Freor A.

Next, let us prove the strong completeness for E(ec)-R. As R*
in [2), we define A to be an E(ec)-R consequence of a set of
formulas Y if and only if for every E(ec)-R model, whenever a k&
B for every B €T, a F A, for (not just 0 but) all a € U. Let us
say that A is E(ec)-R deducible from T if and only if A is in
every E(ec)-R theory containing T. Then,

Proposition 6 If T Fgeo-r A, then there is a prime theory
thatT € ¢ and A & T.
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Proof:Take an enumeration {A,: n € 8} of the well-formed
formulas of E(ec)-R. We define a sequence of sets by induction

as follows:

Lo = {A"' T Freor A'}.
Liv1 = Th(LU{A+1})if it is not the case that §, Ai+1 FE@eo-r A,

& otherwise.

Let { be the union of all these {a's. It is easy to see that
theory not containing A. Also we can show that it is a prime.

Suppose toward contradiction that B V C € { and B, C &€ &.
Then the theories obtained from { U B and ¥ U C must both
contain A. It follows that there is a conjunction of members of {
" such that I’ A B bFgeo-r A and U A C Fgeo-r A. Note that if
FEeo-8 A — B, then A Fgeo-r B. Then, by A8 and MP, we get
@ AB)V (T AC) Feeor A. And we obtain U A (B V C) F
Eeo-R A by the prefixing (as a theorem), A8, and MP. From this

it follows that A € {, which is contrary to our supposition. []

Thus, by using Propositions 5, 6 we can show its strong
completeness as follows.

Theorem 2 (Strong Completeness) If TEgeo-rA, then Treo-rA.
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