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Introduction
  Although H2O2 generally considered a toxic by-pro-
duct of respiration, recent evidence suggests that the 
transient generation of H2O2 is an important signaling 
event triggered by activation of many cell surface 
receptors (1-4). It has thus been proposed that H2O2 
is an intracellular messenger that mediates various 
cellular functions, including the activation of trans-
cription factors such as NF-kB (5) and AP-1 (6,7) as 
well as the inactivation of protein-tyrosine phos-
phatases (8-12). Members of the Prx family of pero-
xidases are present in organisms from all kingdoms 

(13,14). Members of the Prx family can thus be di-
vided into two subgroups as follows: 2-Cys Prx 
proteins, which contain both the NH2- and COOH- 
terminal Cys residues, and 1-Cys Prx proteins, which 
contain only the NH2-terminal Cys (15).
  Prx isoforms are distributed differentially within 
cells: Prx I and II are localized to the cytosol (16, 
17); Prx III is synthesized with a mitochondrial-tar-
geting sequence and is restricted to mitochondria; Prx 
IV is synthesized with an NH2-terminal signal sequ-
ence for secretion and is present in the endoplasmic 
reticulum as well as in the extracellular space; Prx Ⅴ
is expressed in long and short forms that are located 
in mitochondria and peroxisomes, respectively (18); 
and Prx VI is found in the cytosol (19,20). When 
overexpressed in various cell types, Prx enzymes 
efficiently reduced the increase in the intracellular 
concentration of H2O2 induced by platelet-derived 
growth factor or tumor necrosis factor-α, inhibited 
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the activation of NF-kB induced by tumor necrosis 
factor-α, and blocked apoptosis induced by ceramide 
(19,21,22), suggesting that they function in signaling 
cascade by removing H2O2. Purified Prx I is phos-
phorylated on Thr90 by cycline-dependent kinase 
(CDKs), resulting in a marked inhibitionof thepero-
xidase activity of Prx I. From these Prx I inactivation, 
the accumulated intracellular H2O2 might take part in 
cell cycle progression (23). In this paper, we demon-
strated that mitochondrial form inducible Prx III-WT 
HeLa stable cell showed no difference with endogen-
ous Prx III HeLa cell in proliferation. But the indu-
cible Prx III-DN HeLa cell showed apparent decrease 
in proliferation. These results suggested that the non-
functional, dominant negative Prx III is responsible 
for H2O2 increase in HeLa cells and that the accu-
mulated intracellular H2O2 might be a role in the 
HeLa cell proliferation in the mitochondria.

Materials and Methods 
Materials. Dulbecco's Modified Eagle's Medium (DMEM), 
penicillin, streptomycin, G418 and trypsin-EDTA 
were obtained from Life Technologies Inc.; HeLa 
Tet-off cells, pTRE vector, pTK-Hyg plasmid, Tet- 
system approved fetal bovine serum (FBS) were from 
Clontech; Superfect was from Qiagen; Doxycyclin 
was from Sigma. Antibody sources were as follows: 
Santa Cruz; anti-phosphotyrosine (4G10), anti-tubulin 
(B-5-1-2), Sigma. Rabbit polyclonal antibody to Prx 
III was prepared as described (19).
Plasmid constructs. Prx III (D49396) was amplified 
from a human liver cDNA library by PCR and sub-
cloned into pShooter vector (Invitrogen) at Pst I and 
Not I restriction site. In order to construct myc- 
epitope-tagged Prx III, we made the forward primer 
(5'-TTAATAGGATCCAACCCACTGCTTACTGG
CA-3') and the reverse primer for an myc epitope 
sequence at C-termini (5'-AGTATAGGATCCGCT-
GATC AGCGAGCTTCTAG-5') and ran PCR with 
pShooter-Prx III as template. The PCR product 
directly ligated into pTRE vector (Clontech) at BamH 
I restriction site, named as pTRE-III-WT. The iden-
tity of all PCR products was confirmed by nucleotide 
sequencing (NCI-Frederick Cancer Research & De-
velopment Center). A Serine mutation at Cys108 
(C108S) of Prx III was made by standard PCR- 
mediated site-directed mutagenesis with pTRE-Prx 
III as template and complementary primers contain-
ing a single-base mismatch that converts the codon 
for Cys to one for Ser. The C108S mutant of Prx 
III subcloned into pTRE vector was used as template 
for second round of mutagenesis to yield the Cys108 
and 229 double mutant named as pTRE-III-DN.
Cell culture, transfection and stable cell lines. Human HeLa 
Tet-off cells (Clontech) were cultured in DMEM 

supplemented with 10% FBS, penicillin (100 U/ml), 
streptomycin (100 U/ml) and G418 (100μg/ml) at 
37oC in 5% CO₂incubator. Cells were plated at a 
density of 2×105 per 60 mm dish and allowed to 
recover for 24 h. They were then co-transfected with 
5μg of pTRE-III-WT or pTRE-III-DN, 0.5 g pTK- 
Hyg (Clontech) and 30μl Superfect reagent (Qiagen) 
in 1.35 ml serum free DMEM. After 2.5 hr, 3 ml 
of DMEM containing 10% FBS, doxycycline (1μg/ 
ml, sigma) and G418 (100μg/ml) were added to the 
trans-fection mixture, and the cell were incubated for 
an additional 24 hr. After incubation, the cells were 
transferred to 150 mm culture dish to select hygro-
mycin-resistant clones after further incubation. The 
media containing 10% Tet-system approved FBS, 
doxycycline, G418 and hygromycin (200μg/ml).
Immunoprecipitation and immunoblot analysis. HeLa cells 
were washed once with ice-cold phosphate-buffered 
saline, and lysed at 4oC for 20 min in lysis buffer 
containing 25 mM HEPES, pH 7.4, 150 mM NaCl, 
2 mM EGTA, 1 mM dithiothreitol, 25 mM gly-
cerophosphate, 1 mM Na3VO4, 1 mM NaF, 1% Tri-
ton X-100, 1 mM phenylmethylsulfonyl fluoride, 10 
μg/ml aprotinin, and 10μg/ml leupeptin. Cleared 
lysates were obtained by centrifugation at 12,000 g 
for 10 min and the protein concentration was mea-
sured by Bradford assay. For immunoprecipitations, 
cleared lysates (1,000μg in 1 ml) were precleared 
with protein G-sepharose beads (Amersham Phar-
macia Biotech) for 1 hr at 4oC. 1μg of anti-myc 
monoclonal antibody was added and incubated 
overnight at 4oC with rotating. Protein G-sepharose 
was added and incubated at 4oC for 1 hr. Im-
munoprecipitates were washed four times with 1 ml 
of ice-cold lysis buffer, resuspended in 2 Laemmli 
sample buffer, and processed for immunoblotting. 
For immunoblot assay, samples were resolved by 
12% SDS-PAGE, transferred to nitrocellulose mem-
brane, and immunoblotted with an appropriate anti-
body.
Cell proliferation assay. We used the cell proliferation 
reagent WST-1 (4-3-(4-iodophenyl)-2-(4-nitrophenyl)- 
2H-5-tetrazolio-1.3-benzenedisulfonate sodium salt, 
Roche) for assay of cell proliferation. Cells were re-
suspended in DMEM medium in the presence or ab-
sence of doxycycline and seeded in 96 well Falcon 
3,072 plates (Becton Dickinson, Lincoln Park, NJ). 10
μl of WST-1 solution was added to 100μl of PBS 
buffer per well and the cells were then incubated for 
1 hr. The plates were read on a Molecular Devices 
Thermo max Microplate reader, using a test wave-
length of 450 nm, a reference wavelength of 595 
nm.
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Results
Expression of PrxIII in HeLa cells under the control of 
tetracycline. To investigate a physiological role of Prx 
III, we established stable expression of myc-epitope 
tagged wild (pTRE-III-WT) and cysteine mutant Prx 

III (pTRE-III-DN), where two conserved and active 
site cystein residue was replaced by serine residue. We 
cotransfected pTRE-III-WT or pTRE-III-DN. After 
selection, 49 Prx III WT and 36 DN surviving colo-
nies were screened by the western blotting with Prx 
III antibody, each 8 and 10 colonies were selected. 
Based on expression level, we chose a clone of HeLa 
cells. For screening the elevated levels of myc-tagged 
wild and mutant Prx III proteins, we induced expres-
sions of Prx III-WT-Myc and Prx III-DN-myc by 
removal of doxycycline. After 3 days, the expression 
levels of each type of cells were similar to those of 
endogenous Prx III, respectively (Fig. 1A). Next 
question is how long the induced protein is lasting 
in the cells. So we quantitatively analyze the degra-
dation of induced Prx III after the addition of doxy-
cycline. By 72 hr, the expression level of induced Prx 
III was diminished gradually (Fig. 1B). From quanti-
tative analysis, the half-life of induced Prx III was 
approximately 17 hr (Fig. 1C).
Proliferation. To investigate how mitochondrial Prx III 
related to cell growth in the cells, Prx III DNA was 
stably transfected into HeLa cells. Tetrazolium salt 
has been used to develop a quantitative colorimetric 
assay for cell survival. The assay detects living, but 
not dead cells and the signal generated is depend on 
the degree of activation of the cells. For this purpose, 
we used MTT derivative WST-1, which is indicator 
of mitochondrial dehydrogenase in viable cell. A role 
in normal growth was demonstrated in HeLa cells by 
using human Prx III, resulted in a no difference in 
serum-dependent growth (Fig. 2A). But dominant nega-
tive stable cell line resulted in a decrease (Fig. 2B).

Discussion
Subcellular distribution of Prx III is in mitochondria. 
The 2-Cys Prx III enzymes exist as homodimers with 
the two monomers oriented in a head-to-tail manner 
(13,15). To investigate a physiological role of Prx III, 
we established stable expression of myc-epitope tag-
ged wild and cystein mutant dominant negative in 
HeLa Tet-off cells. But Prx III dimerization is re-
quired for the activation in Prx III inducible stable 
cells. The expressed mutant Prx III can form hetero- 
dimer with endogenous proteins (data not shown). So 
we use this cell line for further Prx III physiological 
study.
  Moreover expressed inducible Prx III is maintained 
for about 72 hr after the addition of the doxycycline. 
Even the half-life of Prx III is 17 hr. This results 
shows the stability of inducible Prx III is enough to 
examine the cell proliferation for 3 days. After 17hrs 
expression of Prx III inducible stable cells, at least 
the 50% of the induced Prx III form the dominant 
negative heterodimer and works as a dominant ne-

Figure 1. Expression of wild and mutant Prx III in HeLa cells
after removal of doxycycline. A. HeLa Tet-off cells were stably
transfected with wild type (WT) and mutant type (DN) of Prx 
III, respectively. Cells were cultured in either the presence (+)
or absence (-) of doxycycline (1μg/ml) for indicated time 
points. Analysis of induced Prx III degradation. HeLa Tet-off 
cells were stably transfected with wild type (WT) Prx III. To 
induce an expression of Prx III, cells were cultured in the 
absence of doxycycline for 48 hr. After doxycycline (1μg/ml) 
was added into culture media, cells were further cultured for the
indicated time points. B, lysates (5μg proteins) were resolved by
12% SDS-PAGE, transferred to nitrocellulose membrane, and 
immunoblotted with anti-Prx III antibody. C, chemiluminescence
signals developed and collected in Kodak Image Station and 
quantitated by using Image-Quant software, according to manu-
facturer's instruction. Molecular size standards in kilodaltons are
shown on the left.
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gative mutants.
  In the experiment of the mitochondrial Prx III 
relation to cell growth in the cells, we used Prx III 
stable cell with wild type and dominant negative type, 
respectively.
  Induced Prx III WT protein of stable cell line had 
no effect in the cell growth. From this result, endo-
genous Prx III protein of Prx III WT stable cell line 
might be enough amounts to functioning in mito-
chondria. Base on unique Prx structural feature, cys-
tein double mutant of Prx where two conserved, acti-
ve site cystein residues are replaced by serine resi-
dues, served as a dominant negative mutant to titrate 
out the endogenous wild-type proteins. And domi-
nant negative Prx III protein has no more activity as 
a peroxidase. Mitochondria are a major physiological 
source of reactive oxygen species (ROS), which can 
be generated during mitochondrial respiration (24). 
Superoxide radicals, formed by mitochondrial elec-
tron transport chain or by an NADH-independent 
enzyme, can be converted to H2O2 and to the hydro-
xyl radical (25).
  Thus mitochondria are continually exposed to ROS 
that cause peroxidation of membrane lipids, cleavage 
of mitochondrial DNA, and impairment of ATP 
generation, with resultant irreversible damage to mito-
chondria.
  Arai et al. shows that mitochondrial PHGPx (phos-
pholipids hydroperoxide glutathione peroxidase) was 
prevent cell death that was caused by ROS generated 

in mitochondria and by exogenously added hydro-
peroxides (26). The result of dominant negative Prx 
III stable cell reflects that generated ROS in mito-
chondria causes cell death.
  Prx V, the member of the Prx family, is localized 
intracellulary to cytosol, mitochondria and peroxi-
somes. The mitochondrial fraction of Prx V has the 
possibility to affect Prx III overexpressed HeLa Tet- 
off cell proliferation. Seo et al. showed the amounts 
of various Prx isoforms in mammalian cells (16). In 
HeLa cells, the amount of Prx III and V was similar 
and relatively smaller than other isoforms. Moreover, 
PrxIII was mitochondrial dominant form, but one 
third of total Prx V was mitochondrial form. Prx V 
could not overcome the effect of Prx III in Prx III 
overexpressed HeLa Tet-off cell. Therefore, our re-
sult suggest that Prx III in mitochondria has an im-
portant effect in cell growth.
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