DOI QR코드

DOI QR Code

Cadmium Elimination in Tissue of Olive Flounder, Paralichthys olivaceus after Long-Term Exposure

카드뮴 장기노출 후 넙치, Paralichthys olivaceus의 기관에 따른 카드뮴의 배출

  • KIM Seong-Gil (Department of Aquatic Life Medicine, Pukyong National University) ;
  • JANG Suck-Woo (Department of Aquatic Life Medicine, Pukyong National University) ;
  • KANG Ju-Chan (Department of Aquatic Life Medicine, Pukyong National University)
  • 김성길 (부경대학교 수산생명의학과) ;
  • 장석우 (부경대학교 수산생명의학과) ;
  • 강주찬 (부경대학교 수산생명의학과)
  • Published : 2003.02.01

Abstract

Experiments were carried out to investigate the elimination of cadmium in tissues (gill, intestine, liver, kidney and muscle) of flounder, Paralichthys olivaceus, after sub-lethal Cd exposure (5, 50, 100 ${\mu}g/L$). During the depuration phase, Cd concentration in the gill decreased immediately following the end of the exposure period. The elimination rates at the end of depuration periods were $18\%$ for 50 ${\mu}g/L$ exposure and $70\%$ for 100 ${\mu}g/L$ exposure. Intestine showed fastest elimination rates of Cd at all concentration. At the end of the depuration period, the Cd concentration was similar to that in the control, Cd elimination in liver significantly decreased after 10 days of depuration period. After 20 days of depuration, the elimination rate was $66.20\%$ in the fish exposed to 50 ${\mu}g/L$ and $86.22\%$ in the fish exposed to 100${\mu}g/L$. The order of cadmium elimination in tissues were decreased intestine>liver${\geq}$gill>>kidney during depuration periods. In this study the gill, intestine and liver showed faster elimination rate of Cd in 50, 100 ${\mu}g/L$-Cd exposure concentration. After the end of the Cd exposure, the Cd concentration in the kidney slowly decreased or remained constant and the Cd concentration in the muscle slowly increased or remained constant.

넙치 (P. olivaceus)를 카드뮴 아치사 농도인 5, 50, 100 ${\mu}g/L$의 구간에 30일간 노출시킨후 청장기간을 가져 아가미, 간, 신장, 창자 및 근육에서 축적된 카드뮴의 제거정도를 조사하였다. 아가미에서는 노출농도 50 ${\mu}g/L$ 이상에서는 배출 10일째부터 유의한 감소를 나타내었으며, 배출이 가장 빨랐던 기관은 창자로써 배출 10일째부터 노출농도 50, 100 ${\mu}g/L$에서 $50\%$ 이상의 제거율을 나타냈다. 간은 배출 10일째부터 유의한 감소를 나타냈으며, 노출 20일 이후에는 노출구간 50, 100 ${\mu}g/L$에서는 각각 $66.20\%$$86.22\%$의 제거율을 나타냈다. 신장에는 카드뮴 노출이후 각 구간에서 유의한 감소를 나타내지 않았으며, 근육은 다른 기관들과는 달리 카드뮴 노출 이후 배출실험에서도 지속적인 농도 증가가 나타냈다. 카드뮴 노출 30일 후 배출되는 20일 동안 가장 많이 배출되는 기관의 순서는 창자>간${\geq}$아가미>>신장의 순으로 나타났다. 아가미, 창자와 간은 배출 20일 동안 급격한 카드뮴의 제거가 나타났으며, 신장은 유의적인 배출이 이루어지지 않고 농도변화가 거의 없었다. 근육은 배출이 이루어지지 않고, 카드뮴이 없는 해수에서도 지속적으로 증가하는 경향을 나타내었다.

Keywords

References

  1. APHA-AWWA-WEF. 1992. Standard methods for the examination of water and wastewater. 18th. Ed. APHA Washington, D.C., 1286pp
  2. Cinier, C.C., M. Petit-Ramel, R. Faure, D. Garin and Y. Bouvet. 1999. Kinetics of cadmium accumulation and elimination in carp Cyprinus carpio tissues. Comp. Biochem. Physiol., 122C, 345-352
  3. Dou, S.Z. 1992. Feeding habit and seasonal variation of stomach contents of flounder, Parialichthys olivaceus (T. & S.) in the Bohai Sea. Mar. Sci., 4, 277-281
  4. Douben, P.E.T. 1989. Metabolic rate and uptake and loss of cadmium from food by the fish Noemacheilus barbatulus L. (stone loach). Environ. Pollut., 59, 177-202 https://doi.org/10.1016/0269-7491(89)90226-1
  5. Harrison, S.E. and J.F. Klaverkamp. 1989. Uptake, elimination and tissue distribution of dietary and aqueous cadmium by rainbow trout (Salmo gairdneri) and lake whitefish (Coregonus clupeaformis). Environ. Toxicol., 8, 87-97 https://doi.org/10.1897/1552-8618(1989)8[87:UEATDO]2.0.CO;2
  6. Heath, A.G. 1987. Water pollution and fish physiology. CRC press, Florida, USA, 245pp
  7. Jansen, A. and F. Bro-Rasmussen. 1992. Environmental cadmium in Europe. Rev. Environ. Cotam. Toxicol., 125-181
  8. Jung, S.H., J.W. Kim, I.G. Jeon and Y.H. Lee. 2001. Formaldehyde residues in formalin-treated olive flounder (ParaIichthys olivaceus), black rockfish (Sebastes schlegeli), and seawater. Aquaculture, 194, 253-262 https://doi.org/10.1016/S0044-8486(00)00530-5
  9. Kargin, F. 1996. Elimination of cadmium from Cd-contaminated Tilepia zilli in media containing EDTA and freshwater: changes in protein level. Bull. Environ. Contam. Toxicol., 57, 211- 216 https://doi.org/10.1007/s001289900177
  10. Kargin, F. and H.Y. Coounn. 1999. Metal interactions during accumulation and elimination of zinc and cadmium in tissues of the freshwater fish Tilapia nilptica. Bull. Environ. Contam. Toxicol., 63, 511-519 https://doi.org/10.1007/s001289901010
  11. Kuroshima, R 1987. Cadmium accumulation and its effect on calcium metabolism in the girella Girella punctata during a longterm exposure. Bull. Jap. Soc. Fish., 53, 445-450 https://doi.org/10.2331/suisan.53.445
  12. Larson, A., C. Haux and M. Sj\ddot{o}beck. 1985. Fish physiology and metal pollution: Results and experiences from laboratory and field studies. Ecotoxicol. Environ. Saf., 9, 250-281 https://doi.org/10.1016/0147-6513(85)90045-4
  13. Lemaire, G.S. and P. Lemaire. 1992. Interactive effects of cadmium and benzo(a)pyrene on cellular structure. and biotransfromation enzymes of the European eel. Aquat. Toxicol., 22, 145-160 https://doi.org/10.1016/0166-445X(92)90029-M
  14. Nielsen, J.B. and O. Anderson. 1996. Elimination of recently absorbed methyl mercury depends on age and gender. Pharmacol. Toxicol., 79, 60-64 https://doi.org/10.1111/j.1600-0773.1996.tb00243.x
  15. Parsons, T.R., Y. Maita and C.M. Lalli. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon press. New York, 173pp
  16. Roesijadi, G. 1992. Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat. Toxicol., 22, 81-114 https://doi.org/10.1016/0166-445X(92)90026-J
  17. Sastry, K.Y. and K. Subhadra. 1982. Effect of cadmium on some aspects of carbohydrate metabolism in a freshwater catfish, Heteropneustes fossilis, Toxicol. Lett., 14, 45-51 https://doi.org/10.1016/0378-4274(82)90008-X
  18. Soengas, J.L., M.J. Agra-Lago, B. Carballo, M.D. Andres and J.A.R. Vieira. 1996. Effect of an acute exposure to sublethal concentration of cadmium on liver carbohydrate metabolism of Atlantic salmon (Salmo salar), Bul!. Environ. Contam. Toxicol., 57, 625-631 https://doi.org/10.1007/s001289900236
  19. Sorensen, E.M. 1991. Cadmium. In metal Poisoning in Fish, CRC Press, Boca Raton, Florida, pp. 175-234
  20. Van Dolah, F.M., T.C. Siewicki, G.W. Collins and J.S. Logan. 1987. Effects of environmental parameters on the elimination of cadmium by eastern oyster, Crassostrea virginica. Arch. Environ. Contam. Toxicol., 8, 85-95
  21. Varanasi, U. and D. Markey. 1978. Uptake and release of lead and cadmium in skin and mucus of coho salmon (Oncorhynchus kisutch). Comp. Biochem. Physiol., 6OC, 187-191
  22. Verbost, P.M., J.V. -Roij, G. Flik, R.A.C. Lock and S.E. Wendelaar Bonga. 1989. The movement of cadmium through freshwater trout branchial epithelium and its interference with calcium transport. J. Exp. BioI., 145, 185-197
  23. Viarengo, A., S. Palmero, G. Zanicchi, R. Capelli, R. Vassiere and M. Orunesu. 1985. Role of metallothioneins in Cu and Cd accumulation and elimination in the gill and digestive gland cells of Mytilus galloprovincialis Lam. Mar. Environ. Res., 16, 25-36
  24. Wicklund, A., P. Runn and L. Norrgren. 1988. Cadmium and zinc interaction in fish: Effects of zinc on uptake, organ, distribution end elimaination of $^{109}Cd$Cd in the zebrafish, Brachydanio rerio. Arch. Environ. Contam. Toxicol., 17, 345-354 https://doi.org/10.1007/BF01055172
  25. Woo, P.T.K., M.S. Yoke and M.K. Wong. 1993. The effects of shortterm acute cadmium exposure on blue tilapia, Orcochromus aurues. Environ. BioI. Fish., 37, 67-74 https://doi.org/10.1007/BF00000714
  26. Yang, H.N. and H.C. Chen. 1996. Uptake and elimination of cadmium by japanese eel, Anguilla japonica, at various temperatures. Bull. Environ. Contam. Toxicol., 56, 670-676 https://doi.org/10.1007/s001289900098
  27. Zar, J. H. 1996. Biostatistical Analysis. Prentice Hall, London, 662pp

Cited by

  1. The Bioconcentration of Naphthalene in Tissues of Juvenile Olive flounder, Paralichthys olivaceus vol.18, pp.6, 2012, https://doi.org/10.7837/kosomes.2012.18.6.530