DOI QR코드

DOI QR Code

Effects of Dietary Copper Exposure on Accumulation and Histopathological Change in Liver of Juvenile Rockfish, Sebastes schlegeli

  • Kim Jae-Won (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Kim Seong-Gil (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Kim Sang-Gyu (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Song Seoung-Yeup (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Kang Ju-Chan (Department of Aquatic Life Medicine, Pukyong National University)
  • Published : 2003.06.01

Abstract

Experiments were carried out to investigate the accumulation and the histopathological changes in liver of juvenile rockfish, S. schlegeli, after sub-chronic dietary Cu (0, 50, 125, 250 and 500mg/kg) exposure for 60 days. Cu accumulation in liver was significantly increased with dietary exposure period and concentration for 60 days, and has a linear relation with dietary exposure days. After 60 days of Cu dietary exposure, the Cu concentration in the liver was $75.9\pm12.05,\;126.29\pm22.11\;and\;360.44\pm45.26\;{\mu}g/g$ dry weight and was approximately 11-fold, 18-fold and 51-fold higher than in the control diet group at 125, 250 and 500 mg/kg Cu diet group. The accumulation factors were increased with the dietary exposure period in liver of rockfish. In the primary exposed stage, the effect of hepatic tissue in the rockfish exposed to dietary Cu observed enlargement of hepatocytes nuclei, activity of hepatic cells and the swelling of hepatic cells. While exposed time and concentration were increased, the distinct granulation, irregular shape and necrosis of hepatic cells were observed. It was observed that granule degeneration and necrosis showed a part of cells in hepatic tissue after 60 days at 500 mg/kg.

Keywords

References

  1. Arellano J.M., V. Storch and C. Sarasquete. 1999. Histological changes and copper accumulation in liver and gills of the senegales sole, Solea senegalensis. Ecotoxicol. Environ. Safe., 44, 62-72 https://doi.org/10.1006/eesa.1999.1801
  2. Baker, J.T.P. 1969. Histological and electron microscopical observations on copper poisoning in the winter flounder (Pseudopleuronectes americanus). J. Fish. Res. Bd. Can., 26, 2785-2793 https://doi.org/10.1139/f69-275
  3. Berntssen, M.H.G., K. Hylland, S.E. Wendelaar Bonga and A Maage, 1999. Toxic levels of dietary copper in Atlantic salmon (Salmo salar L.) parr. Aquat.Toxicol., 46, 87-99 https://doi.org/10.1016/S0166-445X(98)00117-9
  4. Brown, D.A., S.M. Bay, J.F. Alfafara, G.P. Hershelman and K.D. Rosenthal. 1984. Detoxification/toxification of cadmium in scorpionfish (Scorpaena guttata): acute exposure. Aquat. Toxicol., 5, 93-107 https://doi.org/10.1016/0166-445X(84)90001-8
  5. Brungs, A, E.N. Leonard and J.M. McKim. 1973. Acute and long-term accumulation of copper by the brown bullhead Ictalurus nebulosus. J. Fish. Res. Bd. Can., 30, 583-586 https://doi.org/10.1139/f73-103
  6. Buckley, J.T., M. Roch, J.A. McCarter, C.A., Rendell and A.T. Matheson. 1982. Chronic exposure of coho salmon to sublethal concentrations of copper. I. Effect on growth, on accumulation and distribution of copper, and on copper tolerance. Camp. Biochem. Physiol., 72C, 15-19 https://doi.org/10.1016/0306-4492(82)90198-8
  7. Bunton, T.E. and J.M. Frazier. 1989. Hepatocellular ultrastructure in white perch (Morone americana) with abnormal hepatic copper storage. Mar. Environ. Res., 28, 375-382 https://doi.org/10.1016/0141-1136(89)90265-1
  8. Christensen, G.M. and J.H. Tucker. 1976. Effects of selected water toxicants on the in-vitro activity of fish carbonic anhydrase. Chem. Biol, Interactions, 13, 181-192 https://doi.org/10.1016/0009-2797(76)90007-7
  9. Cinier, C.C., M. Petit-Ramel, R. Faure, D. Garin and Y. Bouvet. 1999. Kinetics of cadmium accumulation and elimination in carp Cyprinus carpio tissues. Comp. Biochem. Physiol., 122C, 345-352
  10. Cousins, R.J. 1985. Absorption, transport and hepatic metabolism of copper and zinc: Special reference to metallothionein and ceruloplasmin. Physiol. Rev., 65, 238-309 https://doi.org/10.1152/physrev.1985.65.2.238
  11. Dallinger, R., F. Prosi, H. Segner and H. Back. 1987. Contaminate food and uptake of heavy metals by fish: a review and a proposal for further research. Oecologia, 73, 91-98 https://doi.org/10.1007/BF00376982
  12. Eisler, R. and G. Gardner. 1973. Acute toxicology to an estuarine teleost of mixtures of cadmium, copper and zinc salts. J. Fish. Biol., 5, 131-142 https://doi.org/10.1111/j.1095-8649.1973.tb04441.x
  13. Farag A, M. Stansbury, C. Hogstrund, E. MacConnell and H.L. Bergman. 1995. The physiological impairment of free-ranging brown trout exposed to metals in the Clark Fork River, Montana. Can. J. Fish. Aquat. Sci., 52, 2038-2050 https://doi.org/10.1139/f95-795
  14. Gatlin, D.M. and R.P. Wilson. 1986. Dietary copper requirement of fingerling channel catfish. Aquaculture, 54, 277-285 https://doi.org/10.1016/0044-8486(86)90272-3
  15. Goyer, R.A. 1991. Toxic Effects of Metal in Casarett and Doulls Toxicology; Basic Science of Poisons. 4th ed., Pergamon Press, Oxford, 1033 pp
  16. Handy, R.D. 1996. Dietary exposure to toxic metals in fish. In: Toxicology of Aquatic Pollution, Taylor E.W. ed., Cambridge University Press, New York, pp. 29-60
  17. Heath, A.G. 1995. Water Pollution and Fish Physiology. CRC Press, Boca Raton, Florida, 359 pp
  18. Hinton, D.E. and D.J. Lauren. 1990. Integrative histopathological approaches to detecting effect of environmental stressors on fishes. Am. Fish. Soc. Symp., 8, 51-66
  19. Holwerda, D.A. 1991. Cadmium kinetics in freshwater clams. V. Cadmium-copper interaction in metal accumulation by Anodonta cyngneaand characterization of metal binding protein. Arch. Environ. Contam. Toxicol., 21, 432-437 https://doi.org/10.1007/BF01060367
  20. Homing, W.B. and T.W. Nieheisel. 1979. Chronic effect of copper in the bluntnose minnow, Pimephales notatus (Rafinesque). Arch. Environ. Contam.Toxicol., 8, 545-552 https://doi.org/10.1007/BF01055035
  21. Julshamn, K, K.J. Andersen, O. Ringdal and J. Brenna. 1988. Effect of dietary copper on the hepatic concentration and subcellular distribution of copper and zinc in the rainbow trout (Salmo gairdneri). Aquaculture, 73, 143-155 https://doi.org/10.1016/0044-8486(88)90049-X
  22. Jung, S.H., J.W. Kim, I.G. Jean and Y.H. Lee. 2001. Formaldehyde residues in formalin-treated olive flounder (Paralichthys olivaceus), black rockfish (Sebastes schlegeli), and seawater. Aquaculture, 194, 253-262 https://doi.org/10.1016/S0044-8486(00)00530-5
  23. Kamunde, C., M. Grosell, D. Higgs and C.M. Wood. 2002. Copper metabolism in actively growing rainbow trout (Oncorhynchus mykiss): interactions between dietary and waterborne copper uptake. J. Exp. Biol., 205, 279-290
  24. Langston, W.J. 1990. Toxic effects of metals and the incidence of metal pollution in marine ecosystem. In: Heavy Metals in the Marine Environment, Furness R.W. and P.S. Rainbow. eds. CRC Press, Boca Raton, Florida, pp. 143-182
  25. Lanna, R.P., B. Hicks and J.W. Hilton. 1987. Histological observations on intrahepatocytic copper-containing granules in rainbow trout reared on diets containing elevated levels of copper. Aquat. Toxicol., 10, 251-263 https://doi.org/10.1016/0166-445X(87)90001-4
  26. Lanno, R.P., S.J. Slinger and J.W. Hilton. 1985. Maximum tolerable and toxicity levels of dietary copper in rainbow trout (Salmo gairdneri Richardson). Aquaculture, 49, 257-268 https://doi.org/10.1016/0044-8486(85)90084-5
  27. Larssson, A., C. Haux and M. Sjobeck. 1985. Fish physiology and metal pollution: Result and experiences from laboratory and field studies. Ecotoxicol. Environ. Safe., 9, 250-281 https://doi.org/10.1016/0147-6513(85)90045-4
  28. Leland, H.V. and J.S. Kuwabara. 1985. Trace metals. In: Fundamentals of Aquatic Toxicology, Rand G.M. and S.R. Petrocelli. eds., Hemisphere Publishing Corporation, New York, pp. 374-415
  29. Lorentzen, M, A. Maage and K. Julshamn. 1998. Supplemeriting copper to a fish meal based diet fed to Atlantic salmor parr affects liver copper and selenium concentration. Aquacul. Nutr., 4, 67-72 https://doi.org/10.1046/j.1365-2095.1998.00046.x
  30. Lundebye, A.K., M.H.G. Berntssen, S.E. Wendelaar Bonga and A Maage. 1999. Biochemical and physiological responses in Atlantic salmon (Salmo salar) following dietary exposure to copper and cadmium. Mar. Pollut. Bull., 39, 137-144 https://doi.org/10.1016/S0025-326X(98)00208-2
  31. Miller, P.A.. R.P. Lanno, M.E. McMaster and D.G. Dixon. 1993. Relative contributions of dietary and waterborne copper to tissue copper burdens and waterbornecopper tolerance in rainbow trout (Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci., 50, 1683-1689 https://doi.org/10.1139/f93-189
  32. Murai, T., .I.W. Andrews and R.G. Smith. 1981. Effects of dietary copper on channel catfish. Aquaculture, 22, 353-357 https://doi.org/10.1016/0044-8486(81)90161-7
  33. Olsson, P.E., A. Larsson, S. Maage, C. Haux, K. Bonham, M. Za arullah and L. Gedamu. 1989. Induction of metallothionein synthesis in rainbow trout, Salmo gairdneri, during long-term exposure to water borne cadmium. Fish Physiol. Biochem., 6, 221-229 https://doi.org/10.1007/BF01875025
  34. Ortiz, J.B., M.L. Gonzales de Canales and C. Sarasquete. 1999. Quantification and histopathological alterations produced by sublethal copper concentrations in Fundulus heteroclitus. Cien. Mar., 25, 119-143 https://doi.org/10.7773/cm.v25i1.644
  35. Pagenkopf, G.K. 1983. Gill surface interaction model for trace-metal toxicity to fishes: role of complexation, pH and water hardness. Environ. Sci. Technol., 17, 342-347 https://doi.org/10.1021/es00112a007
  36. Roesijadi, C. and W. Robinson. 1994. Metal regulation in aquatic animals: Mechanisms of uptake, accumulation and release. In: Aquatic Toxicology, Molecular, Biochemical and Cellular Perspectives, Malins, D.C. and G.K. Ostrander. eds., CRC Press, Boca Raton, Florida, pp. 387-420
  37. Roesijadi, G. 1992. Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat. Toxicol., 22, 81-114 https://doi.org/10.1016/0166-445X(92)90026-J
  38. Segner, H. and T. Braunbeck. 1990. Qualitative and quantitative assessment of the response of milkfish, Chanos chanos, fry to low-level copper exposure. In: Pathology in Marine Science, Perkins, F. and T. Cheng. eds., Proc. of PAMAQ III, Gloucester Point, Virginia, pp. 347-368
  39. Sorensen, E.M. 1991. Cadmium. In: Metal Poisoning in Fish. CRC Press, Boca Raton, Florida, pp. 175-234
  40. Wong, P.P.K., L.M. Chu and C.K. Wong. 1999. Study of toxicity and bioaccumulation of copper in the silver sea bream Sparus sarba. Environ. Int., 25, 417-422 https://doi.org/10.1016/S0160-4120(99)00008-2
  41. Yang, H.N. and Chen, H.C. 1996. Uptake and elimination of cadmium by Japanese eel, Anguilla japonica, at various temperatures. Bull. Environ. Contam. Toxicol., 56, 670-676 https://doi.org/10.1007/s001289900098

Cited by

  1. Development of Formula Diet and Current Situation of Culture Industry of Korean Rockfish Sebastes schlegeli vol.6, pp.2, 2003, https://doi.org/10.12677/ojfr.2019.62011